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The plastic behavior of a superconducting material is investigated and the corresponding
elastoplastic formulation for the distribution of stress and strain in a superconducting solenoid
magnet is presented. The analysis calculates stress and strain at the midsection, where tangential
stress exhibits its maximum value and shear stress is negligible. The prediction of stress and strain
is essential for both the mechanical and electrical design of high-field superconducting magnets
containing Nb3Sn superconductor. The concept of plasticity is introduced for the first time in the
context of magnet design for Nb3Sn conductor and compared to alternative approaches using
conventional elasticity theory. Individual coil sections of a superconducting magnet can be
reinforced by an outer section of structural material, the effect of which is included in this
formulation. The results show that the elasticity approach using the ‘‘secant modulus method’’ does
not fully predict the strain distribution; however, it can be used to approximate the stresses. It is
shown that for an accurate strain prediction the true nonlinear elastoplastic nature of the
superconducting materials should be considered and proper yield criteria should be used. The
inaccurate prediction of strains~tangential or radial! can affect critical current density and the
evaluation of the reinforcements. ©1996 American Institute of Physics.
@S0021-8979~96!03616-X#
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I. INTRODUCTION

There is a long history of attempts to understand an
improve the performance of adiabatically stable, epoxy im
pregnated superconducting magnets. The tendency of coil
quench prematurely, at relatively low fractions of the critica
current, or to exhibit training behavior, in which the coi
progressively reaches higher fields in a series of runs, is
ten attributed to mechanical issues. Frictional motion of th
conductor within the windings or of slipping between th
windings and adjacent supporting structure can result
heating of the superconductor leading to quench. Stre
analysis, and a knowledge of stress, strain, and displacem
of the windings, is therefore central to the design of epox
impregnated superconducting magnets. Lower-field co
usually employ NbTi composite superconductors, which a
essentially linear in their stress–strain characteristics to t
level of stress typically employed. Higher-field coils com
monly employ a Nb3Sn composite superconductor, in which
the Nb3Sn is formed by a high-temperature heat treatment
the drawn wire. The resulting conductor is significantly non
linear in its stress–strain characteristics at the usual ope
ing levels of stress. This mechanical behavior motivates
effort to apply plasticity theory to the stress analysis of high
field magnets.

A high-field magnet is often a nested set of individua
mechanically independent coils on separate support str
tures~Fig. 1!. The case of a single constant current density

a!Electronic mail: vaghar@magnet.fsu.edu
2490 J. Appl. Phys. 80 (4), 15 August 1996 0021-8979/96

Downloaded¬06¬Apr¬2001¬to¬146.201.226.127.¬Redistribution¬subj
d
-
to
l
l
of-
e

in
ss
ent
y
ils
re
he
-

of
-
at-
an
-

l,
c-
in

each coil is assumed here. High-field coils can have ad
tional support structure on the outer diameter to constrain
windings, reducing the level of stress and strain experienc
by the conductor. The stress analysis treats one individ
coil and its associated reinforcement structure. The to
stress in the windings has several sources. Stress is de
oped during winding of the conductor or possibly durin
winding of an overbanding support structure. Stress is a
developed during the cooling of the magnet to the cryogen
operating temperature due to differences in thermal contr
tion of the constituent materials. The overriding domina
source of stress is the magnetic stress from the distribu
Lorentz force in the windings, and for simplicity is the only
stress considered in this analysis.

Previous work has primarily assumed elastic be
havior.1–5 Early analysis, which included a treatment of th
external reinforcement structure, assumed only plane str
condition, treating only the dominant tangential and radi
stress, and setting the axial stress to zero.6 This analysis was
developed further to include plane stress and plane str
solutions, and providing solutions to the winding and therm
stress as well.7 A three-dimensional treatment including axia
stress and strain, but limited to regions of a coil with zer
shear, was presented as a generalized plane strain soluti8

A detailed plasticity analysis of a cylindrical structure with
body force distribution characteristic of a magnet windin
was developed recently9 and compared to elasticity analysis
only for the tangential component.10 Here the complete for-
mulation of the plasticity analysis as applicable to magn
technology is provided. A comparison between the results
/80(4)/2490/11/$10.00 © 1996 American Institute of Physics
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elastic analysis and elastoplastic analysis, and between
ferent assumptions for the yield criteria for the plastic anal
sis, is presented. This analysis includes the formulation
both tangential and transverse directions.

II. STRESS–STRAIN CURVE

The information required for the application of plasticit
theory is contained in the stress–strain curve of a uniax
tensile test.

The nature of the stress–strain curve of Nb3Sn compos-
ite superconductor is related to the composition and proce
ing of the conductor. The composite superconductor includ
a bronze portion around the actual Nb3Sn filaments, a pure
copper stabilizer component, and a small fraction of barri
This composite conductor is processed at a temperature n
700 °C to form the superconductor. The copper and bron
components are fully annealed. Upon eventual cool down
liquid-helium temperature, thermal differential contractio
places the copper in tension, possibly to the point of yie
depending on the detailed configuration of the conductor.
the laboratory tensile test, the initial loading force is applie
to a composite already in a complex state of internal stress
the copper stabilizer is close to yield, it is understandab
that a limited elastic region is displayed in the stress–stra
curve. Eventually the copper and bronze yield, and the nea
linear characteristic displayed by the stress–strain curve
higher levels of stress is related to the Nb3Sn itself remaining
elastic and may partly be a result of work hardening in th
copper and bronze. The Nb3Sn composite conductor is there
fore a complex entity which has simultaneous elastic a
plastic material components. Such a composite mate
might be called intrinsically elastoplastic composite. Th
windings of an adiabatically stable high-field magnet typ
cally combine the Nb3Sn composite conductor with an
epoxy–glass matrix for insulation and support. For the win
ing composite as a whole, while the conductor may yield
the strain levels under consideration, the epoxy–glass ma
will remain elastic. Thus, on a more macroscopic level, th

FIG. 1. Schematic diagram of a representative superconducting magn
J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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winding composite of an epoxy impregnated magnet m
also be described as an intrinsic elastoplastic composite

An idealization of a stress–strain curve obtained fo
ductile material is shown in Fig. 2. The plot of applied stre
versus total strain usually has an initial linear region
which the material is elastic. As the stress is increased
point a, the stress–strain curve ceases to be linear and
material begins to yield. A simplification will be the use o
an elastic linear strain-hardening curve. The initial modu
for the elastic region isE, and the secondary modulus for th
plastic region ish. For an approximation of the elastoplast
behavior two alternative elastic paths can be chosen.
reach the stress levelsb , theoc path with a slope of modu-
lus E can be chosen. It is obvious that this approximati
assumes a smaller strain and does not predict the correct
of strain and stress. For this reason another path can be
sen from the origin to pointb. The slope of this line is
defined as the secant modulusEs . The secant modulus ap
proach assumes a final state of stress which must be
rected iteratively.

III. FORMULATION OF EQUATIONS

The elasticity formulation of the coil stress analysis
first introduced. One coil of a solenoid is assumed to ha
inner radiusa1 and outer radiusa2 and a reinforcement at th
outside of the coil with outer radiusa3 . The coil is made up
of elastically orthotropic, linearly work hardening material
shown in Fig. 3, while the reinforcement is a pure elas
material.

The geometry is axisymmetric in nature, and since
body force is present only in the radial direction all she
components are zero. The stress tensor is reduced to
components in theu, r andz directions. For linear orthotro-
pic elastic material the components of stress and strain
related by Hooke’s law,

e i5
s i

Ei
2(

j51
jÞ i

3

n j i

s j

Ej
, i51,2,3, ~1!

wheres i , e i , andEi are stress, strain, and elastic modul
for i5u, r andz directions andn i j is Poisson’s ratio fori ,

et.

FIG. 2. Stress–strain curve of a typical ductile material.
2491Vaghar, Garmestani, and Markiewicz
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j5u, r andz ( iÞ j ). For either plane stress or plane stra
assumption, the strain components inu and r directions re-
duce to

eu5Lsu2Vs r , e r5Lk2s r2Vsu , ~2!

where for plane stress

R5
1

Er
, L5

1

Eu
, V5

n ru
Er

5
nur

Eu
, ~3!

and for plane strain

R5
12n rznzr

Er
,

L5
12nuznzu

Eu
, ~4!

V5
n ru1nzun rz

Er
5

nur1nuznzr
Eu

,

and for both plane stress and plane strain

k5SRL D 1/2. ~5!

The factor k defines the mechanical anisotropy of elas
moduli in ther –u plane.

Strains are related to the displacement according to
following relations:

e r5
du

dr
, eu5

u

r
, ~6!

whereu is the displacement in the radial (r ) direction.
For an axisymmetric solenoid the equilibrium equatio

reduce to

FIG. 3. Schematic diagram representing the two regions of a magnet.
corresponding mechanical behavior is shown as stress–strain curve.
2492 J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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ds r

dr
1

s r2su

r
1Xr50, ~7!

whereXr is the body force. Magnetic body force is directly
proportional to the product of current density and magnet
field. In this article the stress analysis is performed for th
midsection of the solenoid, in which case the magnetic fie
can be approximated as a linear function of radius,

Bz5J~a2br !, ~8!

where J is the current density anda and b are arbitrary
constants which can be determined from the current dens
and the boundary conditions specified for the field. The cu
rent densityJ is assumed to be constant through each sing
coil; therefore, the magnetic body force is a linear functio
of radius,

Xr5JBz5J2~a2br !. ~9!

Equilibrium equation is then reduced to the following:

ds r

dr
1

s r2su

r
1J2~a2br !50. ~10!

By substituting Eq.~6! into Eq. ~2! stresses are calcu-
lated in terms of displacements. Substituting the stresses in
Eq. ~10! and with the plane stress or strain assumption
differential equation for the radial displacement can be ob
tained,

u91
u8

r
2k2

u

r 2
52J2~a2br !

L2k2V2

L
. ~11!

The solution to this differential equation gives the displace
ment,

u5~L2k22V2!F c1
Lk1V

r k1
c2

Lk2V
r2k

2
J2

L S a

42k2
r 22

b

92k2
r 3D G , ~12!

and hence the stresses in the elastic region,

s r5c1r
k211c2r

2k211J2S1r1J2S2r
2,

~13!
su5c1kr

k212c2kr
2k211J2T1r1J2T2r

2,

wherec1 andc2 are arbitrary constants;S1 , S2 , T1 , andT2
are constants calculated from the mechanical properties a
magnetic fields of the coil,

S152S 21
V

L D a

42k2
, S25S 31

V

L D b

92k2
,

~14!

T152S k21 2V

L D a

42k2
, T25S k21 3V

L D b

92k2
.

The theory of plasticity is formulated in terms of flow
rules which give the increments of plastic strain in terms o

The
Vaghar, Garmestani, and Markiewicz
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applied stress. The flow rule is a description of the yieldin
process in the material, and as such is dependent on the y
criterion or yield function for the material. The flow rule
associated with the yield functions of von Mises, Tresca, a
Hill are used to derive equations for the stresses in the
perconducting magnets.

A. von Mises yield criterion

For the well-known von Mises yield criterion, the flow
rule relates the increments of plastic strainde i j

p to the com-
ponents of the deviator stress tensorSi j5s i j2

1
3skkd i j ,

de i j
p5

3

2

dep

se
Si j . ~15!

The effective stressse has the form of the von Mises yield
function, which in the absence of shear stress reduces to

se
25 1

2@~su2sz!
21~sz2s r !

21~s r2su!2#. ~16!

For the plane strain condition, assuming the von Mis
yield function, a closed-form solution can be derived for th
tangential and radial components of stress and strain. Es
tial to the derivation is the observation that for the plan
strain condition the plastic increment of the axial straindez

p

becomes zero. Using Eq.~15! it is obvious that the deviatoric
stress in the corresponding directionz must be zero. The
axial stress can then be calculated from

sz5
1
2~s r1su!, ~17!

therefore, the components of the deviator stress tensor
simply proportional to the effective stress. By substitutin
Eq. ~17! into Eq. ~16! the von Mises yield criterion reduces
to

su2s r5
2

A3
se . ~18!

The flow rule is then integrated directly to give an algebra
relation between the plastic strain components and the eff
tive strain which is independent of the stresses,

eu
p52e r

p5
A3
2

ep. ~19!

B. Tresca yield criterion

For the Tresca yield criterion, flow rule has the form o

de i j
p52dep

] f ~s i j !

]s i j
, ~20!

which relates the increments of plastic strain compone
de i j

p to increments of effective plastic straindep and partial
derivatives of yield functionf (s i j ) with respect to stress
componentss i j . The Tresca yield function has the form of

f ~s i j ![
1
2~smax2smin!5 1

2se . ~21!
J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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For the case of plane stress, the tangential stress~su! is a
maximum and radial stress (s r) is a minimum (su.0.s r).
For plane strain, the axial stress (sz) is always less than
tangential stress (su.sz.0.s r). Thus, the Tresca yield
criterion reduces to the simple form of

f ~s i j ![
1
2~su2s r !5 1

2se . ~22!

Differentiating the Tresca yield function with respect to
the stress components, and using the flow rule, plastic stra
are found in terms of effective plastic strain,

eu
p52e r

p5ep. ~23!

It can be seen that the two yield criteria for the case
plane strain are derived from very similar formulations an
hence both are treated here at the same time.

An elastic linear strain-hardening constitutive relation i
used to represent the stress–strain history in the plastic
gion. For such a material the relationship between the effe
tive plastic strain and effective stress is

se5sY1cep, ~24!

wherese is the effective stress,sY is the yield stress for
uniaxial tensile test,ep is the effective plastic strain, andc is
a parameter which can be calculated from the initial modul
E and the secondary modulus for the plastic regionh,

c5
Eh

E2h
. ~25!

From the strain-displacement relationships, Eq.~6!, the
compatibility equation is defined as

deu

dr
5

e r2eu

r
, ~26!

where strains are the total strains. In the plastic region t
total strain is a combination of elastic and plastic strains,

e r5e r
e1e r

p , eu5eu
e1eu

p , ~27!

wheree i
e ande i

p stand for elastic and plastic strain.
By substituting Eq.~27! into Eq. ~26!, the compatibility

equation reduces to

deu
p

dr
1

eu
p2e r

p

r
1
deu

e

dr
1

eu
e2e r

e

r
50. ~28!

Rewriting Eq. ~28!, using Eqs.~2!, ~10!, ~18!, ~19!, ~22!,
~23!, and ~24!, a unified differential equation can be ob-
tained,

F1

deu
p

dr
12F1

eu
p

r
1F2

1

r E eu
p

r
dr1F3

1

r
~29!

1F4

ln r

r
1J2F51J2F6r50,

whereF1 throughF6 are
2493Vaghar, Garmestani, and Markiewicz
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F1511z2Lc, F25z2Lc~12k2!,

F352zLsY , F45zL~12k2!sY ,
~30!

F552@~L2V!1L~12k2!#a,

F65F ~L2V!1
L

2
~12k2!Gb,

and wherez represents a yield parameter which is one f
Tresca and 2/) for von Mises.

It should be noted that the same equations are valid
the case of plane stress for the Tresca criterion, with t
associated definition ofR, V, andL according to Eq.~3!.

Solution of the differential Eq.~29! provideseu
p,

eu
p5c3n1r

n11c4n2r
n21J2H1r1J2H2r

21H3 , ~31!
2494 J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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TABLE I. Parameters for example coil.

Name Symbol Value Unit

Inner radiusa a1 14.50 cm
Outer radiusa a2 17.70 cm
Outer radiusb a3 18.40 cm
Young modulus in tangential directiona Eu 105.00 GPa
Young modulus in radial directiona Er 35.00 GPa
Young modulusb Erein. 200.00 GPa
Yield stressa sY 75.00 MPa
Internal pressure Pi 0.00 MPa
Poisson ratioa nur 0.25
Poisson ratiob nrein. 0.30
Magnetic field at inner radiusa B1 14.50 T
Magnetic field at outer radiusa B2 10.00 T
Current densitya J 113.00 A/mm2

Secondary plastic modulusa h 21.00 GPa
Secant modulus in tangential directiona Esu 45.00 GPa
Secant modulus in radial directiona Esr 15.00 GPa

aFor coil.
bFor reinforcement.
FIG. 4. Plane stress analysis using Tresca yield criterion:~a! tangential stress;~b! radial stress;~c! tangential strain; and~d! radial strain.
Vaghar, Garmestani, and Markiewicz
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wherec3 and c4 are arbitrary constants that can be det
mined from the boundary conditions andH1 throughH4 ,
andn1 , andn2 are constants,

H15
@~L2V!1L~12k2!#a

31z2Lc~42k2!
,

H25
22@~L2V!1~L/2!~12k2!#b

81z2Lc~92k2!
,

H352
1

zc
sY , H45

2

z3Lc2~12k2!
sY , ~32!

n15211S 11z2Lck2

11z2Lc D 1/2,

FIG. 5. Deviation from elastic analysis for the same loading conditions.
plastic analysis is performed using Tresca yield criterion and plane s
assumption:~a! tangential stress and~b! tangential strain.
J. Appl. Phys., Vol. 80, No. 4, 15 August 1996

Downloaded¬06¬Apr¬2001¬to¬146.201.226.127.¬Redistribution¬sub
r-

n25212S 11z2Lck2

11z2Lc D 1/2.
From Eq.~31! the stresses in the plastic region are

s r5z2c~c3r
n11c4r

n2!1J2S3r1J2S4r
21S5 ln r1S6 ,

~33!
su5z2c@c3~11n1!r

n11c4~11n2!r
n2#1J2T3r

1J2T4r
21T5 ln r1T6 ,

whereS3 throughS6 andT3 throughT6 are constants,

S35z2cH12a, S45
1
2~cz2H21b!,

S55z2cH31zsY , S65z2cH4 ,
~34!

T35z2cH11S3 , T45z2cH21S4 ,

T55S5 , T65z2cH31S61zsY .

For the plane stress assumption with the von Mises yie
function, a closed-form solution cannot be obtained. Th
situation is described for a more general case of Hill’s crit
rion below.

C. Hill’s yield criterion

For an orthotropic material, the von Mises yield functio
is generalized to Hill’s orthotropic yield function which in
the principal magnet coordinates is written

f ~s i j ![
1
2@F~su2s r !

21G~s r2sz!
21H~sz2su!2#5 1

2,
~35!

whereF, G, andH are related to the tensile yield stresses
the principal directions. An epoxy impregnated magn
winding is nearly transversely isotropic, and this assumpti
is used in the following. For a transversely isotropic materi
(F5H), Hill’s function reduces to

se
25 1

2@~su2s r !
21h~s r2sz!

21~sz2su!2#. ~36!

Note that the effective yield stress is equal to the tangent
yield stress for a uniaxial tensile test. The parameterh is a
measure of anisotropy and may be written as

h5
G

F
52S syu

syr
D 221, ~37!

wheresyu andsyr are yield stresses in tangential and radia
directions.

The more general formulation of plasticity is based on
flow rule of the form

de i j
p5dl

] f ~s i j !

]s i j
, ~38!

where the increments of plastic strain are related through
scalar differential quantity (dl) to the derivatives of the

he
ain
2495Vaghar, Garmestani, and Markiewicz
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FIG. 6. Comparison between secant and elastic–plastic~von Mises! analysis for plane strain condition:~a! tangential stress;~b! radial stress;~c! tangential
strain; and~d! radial strain.
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ill’s
d,
las-
yield function. The flow rule for the transversely isotropi
material is then obtained by substituting the yield functio
into the general form of the flow rule.

Using the proportional loading condition, the differentia
form of the flow rule may be integrated directly to give a
algebraic equation for the plastic strain components. It
possible to use Hooke’s law, the equilibrium equation, a
the constitutive equation to eliminate strains and arrive
two coupled nonlinear first-order differential equations fo
the two components of stress,

dsu

dr
5F1~su ,s r !,

ds r

dr
5F2~su ,s r !. ~39!

These differential equations are solved using a numeri
scheme.9
2496 J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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IV. RESULTS AND DISCUSSION

The elastoplastic analysis is investigated for a Nb3Sn
superconducting coil with reinforcement. The parameters
the coil and reinforcement are presented in Table I. Calcu
tions were made using elastoplastic theory with von Mise
Tresca, and Hill’s yield criteria. These results are compar
with that of the elasticity theory using the secant modulu
Equations~33! ~for plastic region! and ~13! ~for elastic re-
gion! are used to calculate stresses based on elastopla
analysis and Eq.~13! is used to calculate stresses based
elastic analysis. Equation~39! is used to calculate the
stresses numerically based on the plastic analysis and H
~orthotropic! yield criterion. Once the stresses are calculate
strains can be determined separately for the elastic and p
tic regions.
Vaghar, Garmestani, and Markiewicz
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FIG. 7. Comparison between secant and elastic–plastic~von Mises! analysis for plane stress condition:~a! tangential stress;~b! radial stress;~c! tangential
strain; and~d! radial strain.
i

t

nd

ly-

ich
ge

e
stic

ins
ns
lus
for
To present the results two normalized parametersR and
Jn are defined such that for the fully elastic case at the on
of yielding,Jn becomes zero and for the fully plastic caseJn
becomes equal to one. In this formulation the two boundar
R50 and 1 refer to inner and outer radii (a1 ,a2),

R5
r2a1
a22a1

, Jn5
J2Jy
Jp2Jy

. ~40!

HereJy is the current density at the onset of yielding~at the
inner radius! andJp is the current density for complete plas
ticity.

Figure 4 presents a parametric study which includes t
effect of plasticity on the distribution of the two componen
of stress and strain. The effect of plasticity and its spread
examined for different values of current densityJ. Since
J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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there is a direct correlation between the current density a
the resulting magnetic body forces,J ~henceJn! can be as-
sumed to be a controlling parameter in this study.

Figure 5 shows a comparison between the elastic ana
sis using the original elastic modulusE and the elastoplastic
case. The analysis is performed to a current density at wh
the material becomes fully plastic. The results show a lar
error in the values obtained for the tangential strain~an error
of about 30%!. For this reason we limit our analysis to th
case of secant modulus and its comparison to elastopla
analysis.

Figs. 6 and 7 show the distribution of stresses and stra
through the coil with plane strain and plane stress conditio
for two cases of elastic analysis using the secant modu
and elastoplastic analysis. Results show similar behavior
2497Vaghar, Garmestani, and Markiewicz
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FIG. 8. Comparison between Tresca and von Mises yield criterion for plane stress condition:~a! tangential stress;~b! radial stress;~c! tangential strain; and
~b! radial strain.
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su with a difference of less than 10%. Radial stress (s r)
distribution shows an even smaller difference.

The results of the analysis for the tangential strain d
tribution show a difference of about 10% for the plane stre
condition @Fig. 7~c!#. This difference is not only an error in
predicting the mechanical strain, but can also influence
electrical performance of the magnet because the critical
rent density is strain sensitive. The difference in radial str
is dramatically larger@Figs. 6~d! and 7~d!# and it behaves
quite different in the elastoplastic analysis compared to t
of elastic analysis.

A comparison is performed between the two yield crit
ria for the case of plane stress. Figure 8 shows the stre
and strains for the von Mises and Tresca yield criteria. T
results show that the difference for the stresses@Figs. 8~a!
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and 8~b!# and tangential strain@Fig. 8~c!# is small; however,
the results for the radial strain show a large difference@Fig.
8~d!#.

The above calculations were performed assuming an is
tropic yield stress in the windings. The implications of a
orthotropic yield criterion are shown in Fig. 9, where Hill’s
yield criterion is used for a range of values ofh in Eq. ~37!.
Anisotropy~h.1! in general results in a decrease in the dis
tribution of radial stress and an increase in the distribution
tangential stress@Figs. 9~a! and 9~b!#. The material studied is
transversely isotropic and has a low modulus in transver
direction ~radial and axial!. This results in a decrease in the
value of the radial stress. Both components of strain~radial
and tangential! decrease in their magnitude as the materi
becomes more anisotropic@Figs. 9~c! and 9~d!#. The analysis
Vaghar, Garmestani, and Markiewicz
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FIG. 9. Plane stress analysis using Hill’s yield criterion for completely plastic:~a! tangential stress;~b! radial stress;~c! tangential strain; and~d! radial strain.
nce
her

al
lu-
-
d
’s
also shows a 20% difference in predicted tangential str
between the case of isotropy, for whichh51, and the aniso-
tropic case for whichh54.

V. CONCLUSION

Classical plasticity theory together with related yield cr
teria including Hill’s orthotropic yield function is reviewed
and a complete elastoplastic analysis is performed for
Nb3Sn superconducting coil. The results are compared
elastic solutions based on the elastic modulusE and an al-
ternative secant modulusEs . This analysis shows that the
elastic solution based on elastic modulus cannot produc
correct state of stress and strain. Elastic solution based
secant modulus provides the stress state with minimal er
however, it cannot be used to calculate the strain. Furth
more, the determination of the secant modulus require
process of trial and error whereas the elastoplastic anal
J. Appl. Phys., Vol. 80, No. 4, 15 August 1996
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explores the true nature of the stress–strain curve, and o
implemented the stress state can be predicted with no furt
assumptions.

This work produced the formulation based on classic
rate independent plasticity. Further work should seek so
tions which include the effect of strain rate in a unified in
elastic formulation. Additional experimental data is neede
for the constants required in the implementation of the Hill
yield criterion such that the theory can be fully exploited.
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