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Abstract

We show that mechanical design can be conducted where consideration of polycrystalline
microstructure as a continuous design variable is facilitated by use of a spectral representa-
tion space. Design of a compliant 4xed-guided beam is used as a case study to illustrate the
main tenets of the new approach, called microstructure-sensitive design (MSD). Selection of the
mechanical framework for the design (e.g., mechanical constitutive model) dictates the dimen-
sionality of the pertinent representation. Microstructure is considered to be comprised of basic
elements that belong to the material set. For the compliant beam problem, these are uni-axial
distribution functions. The universe of pertinent microstructures is found to be the convex hull
of the material set, and is named the material hull. Design performance, in terms of speci4ed
design objectives and constraints, is represented by one or more surfaces (often hyperplanes) of
4nite dimension that intersect the material hull. Thus, the full range of microstructure, and con-
comitant design performance, can be exploited for any material class. Optimal placement of the
salient iso-property surfaces within the material hull dictates the optimal set of microstructures
for the problem. Extensions of MSD to highly constrained design problems of higher dimension
is also described. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A central aim of materials science and engineering has been to discover and un-
derstand the important associations between the properties and performance of materi-
als, their microstructures, and the processing methods required to achieve them—and
then to exploit these in the design of engineered components. As an ideal, the Fow
of information would be in the direction: design → properties → microstructure →
processing.
Considerable progress has been achieved in recent years, in facilitating this ideal

direction of information Fow, for problems where the topological features of internal
structure control design performance. In several cases design objectives=constraints have
been carried through to microstructure design and to the manufacture of these struc-
tures. For example, materials that realize extremal thermal expansion characteristics
(including negative thermal expansion) have been studied by Sigmund and Torquato
(1996). Compliant micromechanisms and structures with negative Poisson’s ratios were
studied and fabricated (Larsen et al., 1997). A more sophisticated problem, involving
both geometrical optimization and the orientational characteristics of piezocrystals in
hydrophone applications, has been reported by Sigmund et al. (1998). Microstructure
optimization for microactuators, based upon the martensitic transformation, has been
considered by Bhattacharya and James (1999). A recent survey of variational meth-
ods for optimization of structures and microstructures, focused mainly on topology
optimization, is presented in the recent monograph of Cherkaev (2000).
The present work is aimed at facilitating the same ideal Fow direction in the design

paradigm, but it diHers in its focus on the crystallographic and orientational attributes of
polycrystalline microstructure, rather than on the topological. Related to this approach
there has also been considerable progress in both innovative processing to realize novel
microstructures, and in understanding the concomitant microstructure-properties associ-
ations. (References to this work are provided in Section 4.) However, at this juncture,
the discipline has mainly communicated in the opposite direction to the ideal; i.e., pro-
cessing → microstructure → properties → design. One important consequence is that
design practice is usually constrained to the set of reported property values (e.g., in
handbooks), without consideration of the broader set of properties that can be realized
by the engineering of microstructure and processing. These limitations are most evi-
dent in design problems of a highly constrained nature, where multiple objectives and
constraints are manifest, and where limitations in material properties are most keenly
felt.
This paper is about mechanical design, and the means whereby the variability of the

orientational aspects of microstructure can be fully considered in the design process, and
the optimal direction of information Fow can be realized. The new approach presented
here is called microstructure-sensitive design (MSD). Crystalline materials are the main
consideration, including metal and ceramic alloys and crystalline polymers. Thus a large
segment of design practice is potentially impacted. In Section 4 extensions of the work
to include spatial correlation information are described. Such extensions are anticipated
to make a closer connection of the present work with the topological optimization
methods being pursued by other investigators.
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2. Microstructure sensitive design: basics

The roots of MSD trace back to the spectral representation of crystallographic tex-
ture. Speci4cally, the orientation distribution function (ODF) can be described as
a Fourier series of generalized spherical harmonics, weighted by appropriate coef-
4cients (Bunge, 1965; Roe, 1965). These harmonics form a complete orthonormal
basis on the special orthogonal group in three dimensions, SO(3). In the approach
taken by Bunge (1982), the harmonics are further symmetrized for the crystal sym-
metry subgroup, G, such that they form a basis for the homogeneous space SO(3)=G.
This homogeneous space describes the complete set of physically distinctive orien-
tations of the crystal phase (cf. Brocker and tom Dieck, 1985; Adams and Olson,
1998). Here, SO(3)=G shall be an example of a fundamental zone, which contains
the building blocks from which microstructure is constructed. In contrast to the tradi-
tional representations of the fundamental zone, such as by points in an asymmetrical
zone in the three-dimensional euler-angle space (cf. Bunge, 1982) or in Rodrigues
space (cf. Sutton and BalluI, 1995), here we choose a spectral representation in the
in4nite-dimensional Fourier space. In this context, the coordinates of any particular
point are from the set of Fourier coeIcients that describe the single orientation as-
sociated with that point. When the spectral representation of the fundamental zone is
chosen, it is called a material set, in order to distinguish it from previous types of
representations. Material sets of interest are of both greater and lesser complexity, as
compared to SO(3)=G. As it shall be demonstrated, the particular material set(s) of in-
terest in design is fully dictated by the mechanics and physics chosen to model material
behavior.
Having represented the material set in the Fourier space, we realize the profound

advantage that the universe of all microstructures, pertaining to the selected physical
framework of the problem, is easily speci4ed. This is shown to be the convex hull of
the material set, and is thus named the material hull. Each point in the material hull
represents a distinctive microstructure. Consideration of the material hull in design has
the great advantage that all microstructures can be considered simultaneously, and thus
microstructure becomes a design variable.
The class of microstructure–properties relationships that are of interest to MSD is

presently that class associated with an intermediate scale of microstructure representa-
tion. This mesoscale representation includes the spatial distribution of crystallite phase
and orientation in the microstructure; it follows that it includes grain size and shape,
phase and orientation distribution and spatial correlations of these; and it also includes
the 4rst-order description of defect structure. Examples of the latter include the geomet-
rically necessary dislocation density tensor (Sun et al., 2000) and the grain boundary
character distribution (Watanabe, 1984). In the case study presented in this paper, ele-
mentary microstructure–properties relationships are used for initial yielding and elastic
stiHness. Extension of MSD to more complex relationships requires material sets and
hulls of higher dimension; the nature of these extensions is described in Section 4,
but not fully developed. The most important problems in design tend to place de-
mands on both defect-insensitive and defect-sensitive properties of materials; the latter
(e.g., stress corrosion cracking, embrittlement, etc.) require spectral representations that



1642 B.L. Adams et al. / J. Mech. Phys. Solids 49 (2001) 1639–1663

describe the spatial correlation of phase and orientation in the microstructure, and thus
they demand more complex material sets and hulls.
It is demonstrated that the salient microstructure–properties relationships will of-

ten take the form of a family of surfaces (often hyperplanes) in the Fourier space.
These are called iso-property surfaces, given the fact that all microstructures lying on
any particular iso-property surface are predicted to have identical properties. Whenever
an iso-property surface intersects the material hull, the intersection set represents mi-
crostructures (and their concomitant properties) that occur in natural materials. Details
of the placement of the iso-property surface in the material hull impact the predicted
properties. For example, extremal points of intersection of the iso-property planes rep-
resent the limiting values of properties that can be achieved by alterations of the
microstructure. Another important feature of iso-property surfaces is that they typically
reside in 4nite-dimensional subspaces of the full spectral representation. The implica-
tion is that all microstructures associated with identical projections into the residence
subspace of the relevant iso-property surface have the same predicted properties.
The central tenets of MSD will be demonstrated by consideration of the design of a

compliant 4xed-guided beam. Compliant beams are important components in many
compliant mechanisms (cf. Midha et al., 1994). The reader should note that the me-
chanical framework for this case study was deliberately selected to simplify the problem
as much as possible for pedagogical clarity. We focus on the process whereby design
objectives and constraints are communicated in the language of the Fourier space, rather
than on the mechanics of the beam. Within the selected mechanical framework, the
relevant microstructures are shown to belong to the class of axis-distribution functions.
It is demonstrated that for this case study the main design objective and two constraints
are readily communicated as two iso-property planes. Furthermore, it is found that opti-
mization requires a compromise location for both planes, a compromise that stipulates a
family of microstructures that are distinctly poly-axial (rather than single-axial) in
nature.
Following the description of the case study, brief mention is made of directions for

extending these elementary considerations to more advanced microstructure–property
relationships, and to highly constrained design problems where defect-insensitive and
defect-sensitive material properties may both be important.

3. Case study: MSD for a compliant beam

Consider design of a compliant 4xed-guided beam as a prototypical component in
this setting. Compliant beams are essential components of many compliant mechanisms
(Midha et al., 1994). Fig. 1 is a schematic of the beam, which describes its function
under 4xed-guided (parallel) displacement of its ends.

3.1. Stipulation of design objectives and constraints

The primary objective in the compliant beam is minimization of the length of the
beam, L, at speci4ed deFection, Q. The beam must provide this deFection without
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Fig. 1. Schematic of the compliant 4xed-guided beam.

plastic yielding (primary constraint). Thus, both elastic and yielding properties are
germane to the problem. A secondary constraint is that the beam must supply adequate
restoring force to perform its function in the mechanism, without excessive beam width.

3.2. Mechanical framework

We choose to consider the mechanics of the beam using elementary plane-strain
Bernoulli–Euler beam theory (cf. Juvinall, 1967). Within this framework, material
planes that are initially perpendicular to the beam axis remain planes, perpendicu-
lar to the neutral axis of the beam upon deFection. The predicted strain 4eld has only
one non-zero component:

�xx = �
(
Qy
L2

)(
12x
L

− 6
)
: (1)

Here the index x refers to the x-axis of the beam as shown in Fig. 1, � = (1 + �)
(1−2�)=(1−�) and � is Poisson’s ratio. It is evident from (1) that concern for yielding
is focused on the regions of highest strain near the surfaces y=±c and corners x=0;
L. Hereafter the maximum strain value is denoted by �:

�=
�6Qc
L2

: (2)

3.3. Evaluation of the compliant beam: traditional approach

The conventional approach to the compliant beam problem might proceed as follows.
The beam is assumed to consist of a homogeneous material with isotropic elastic
properties, which are speci4ed by Young’s modulus, E. Within the stated framework,
the maximum levels for the non-zero stress components are given by

�xx =
(
E
�

)
�; �yy = �zz =

(
E�

�(1− �)
)
�: (3)
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If the von-Mises yield criterion is selected to evaluate the primary constraint, the
following expression is obtained:

(
E

1 + �

)
�6 �y: (4)

It follows that optimizing the performance of the beam, in terms of the primary objec-
tive and primary constraint (which is tantamount to maximizing � without yielding the
material), requires selection of material with the largest possible ratio of (1 + �)�y=E.
(This is almost the same as maximizing �y=E, given the much larger variation of E
among the candidate materials, as compared to variations in �. Hereafter the eHects
due to variation in � are neglected.)
In order to meet the requirements of the secondary constraint, we note that the

restoring force is linearly dependent upon E=�. Neglecting the small eHect from �,
it follows that suIcient restoring force, without excessive beam width, requires that
E ¿ E∗ where E∗ is to be determined by the speci4c application for the beam and its
allowable width.
Evidently, this secondary constraint limits the reduction of E that tends to improve

the performance of the primary beam relative to the primary objective and constraint
of the design. Conventional design methodology then considers candidate materials,
evaluating the ratio �y=E for each candidate material, subject to the constraint E ¿ E∗.
Material is often selected on this basis. There is usually neither an explicit consideration
of microstructure nor an attempt to bene4t from potential sources of anisotropy in the
available materials.
An “enlightened” design team may consider potential sources of anisotropy, and im-

provements in performance that might be obtained from them. For example, if cubic
metal alloys are of primary interest, the design team may recognize that a preferential
alignment of 〈1 0 0〉 crystal directions with the x-direction of the beam would tend
to minimize E in that direction in some cubic materials. However, consideration of
yielding would lead to the conclusion that the initial yield strength would tend to be
increased by a preferential alignment of 〈1 1 0〉 or 〈1 1 1〉 crystal directions with the
x-direction of the beam. 1 Obviously, the two kinds of preferred axial-distributions
suggested by these elementary considerations are contrary to one another. A rigorous
analysis using available crystal mechanics would suggest a particular axial distribution
that maximizes the ratio �y=E, but then the analysis only considers uni-axial distribu-
tions, and not poly-axial ones. As shown later, a full consideration of crystal mechanics
for the present problem leads to the conclusion that poly-axial distributions are optimal
for the design of the compliant beam, rather than the uni-axial ones.

1 Microstructures that consist of grains with one crystallographic axis 4xed with respect to a speci4ed
macroscopic direction are hereafter called “axial-distributions”, or “uni-axial distributions”. The reader should
note that, for such, information about the distribution of crystallographic axes that lie oH the speci4ed axis
is not relevant.
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3.4. Crystal mechanics

We shall assume that relation (1) describes the strain in the beam to an adequate
approximation, at both the macroscopic level and at the grain level. This is consistent
with the well-known uniform-strain assumption that leads to an upper-bound on the
stored elastic energy in the beam (Hill, 1952; Paul, 1960). It follows that the stress
4eld in the beam varies spatially according to Hooke’s law, 2 applied at the local level:

�ij = Cijxx�xx: (5)

C, the elastic stiHness tensor, is a function of the phase and orientation of the local
crystallite at the point of evaluation.
At this juncture we shall assume that the microstructure of the beam consists of a

single-phase cubic material. Consideration of the symmetry of the cubic crystal shows
that the local elastic stiHness tensor has the form

Cijkl = Co12�ij�kl + C
o
44(�ik�jl + �il�jk) + (Co11 − Co12 − 2Co44)girgjrgkrglr ; (6)

where Co11; C
o
12; C

o
44 are the three independent elastic constants for the reference cubic

crystal (cf. Hirth and Lothe, 1968), and gij are components of the second-order rota-
tion tensor that transforms the reference crystal 3 to coincide with the local crystallite
characteristic of the neighborhood of the speci4ed local position.
The question of yielding is formulated in a particular way that utilizes the uni-

form strain-rate upper-bound condition in crystal plasticity, as described by Hutchinson
(1976). In particular, the overall rate of plastic working, Ẇ

p
, is bounded above by the

volume average of the local rates of plastic working, according to the expression

Ẇ
p
6 〈ẇp〉= 〈�ij�̇pij〉: (7)

In relation (7) the angular brackets, 〈· · ·〉, denote volume averaging, �̇pij is the local
plastic strain rate, and ẇp is the local rate of plastic working. Initial yielding is taken to
occur when Ẇ

p
just reaches a minimum observable level, Ẇ

p
= Ẇ

P
obs. Stress states for

which the predicted rate of plastic working is lower than Ẇ
P
obs are de4ned to lie within

the elastic limit. Following Hutchinson, the local constitutive law is taken to have a
power-law dependence upon the resolved shear stress on each slip system, according
to the expression

�̇(s)

�̇o
=
∣∣∣∣�(s)�(s)c

∣∣∣∣
n

sign(�(s)); (8)

where �̇(s) denotes the slip rate on slip system (s), �(s) and �(s)c denote the resolved
shear stress and the reference value of slip resistance of slip system (s), respectively;

2 In this paper repeated indices imply summation over the integers 1,2,3 according to the Einstein sum-
mation convention, except as otherwise noted. In relation (5), no summation is implied by the repeated x
index.

3 The reference crystal is taken to be oriented such that its basis vectors are of 4xed relationship to a
chosen external reference frame. For the cubic phases considered here the 〈1 0 0〉 crystal directions are taken
to be parallel to the orthonormal external reference frame.
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�̇o is a reference slip rate, and n is the power-law exponent (inverse rate sensitivity
parameter). The resolved shear stress on slip system (s) is related to the Cauchy stress
by the expression

�(s) = �(s)ij �ij: (9)

The geometrical aspects of this expression are contained in the slip tensors, �(s), which
are de4ned by

�(s)ij = 1
2(m

(s)
i n

(s)
j + m(s)

j n
(s)
i ); (10)

where m(s) and n(s) denote the unit slip vectors in the slip direction and slip-plane,
respectively. The local plastic strain rate is then given by the sum over all potential
slip systems according to

�̇pij =
∑
(s)

�(s)ij �̇
(s): (11)

Assuming that the local stress state diHers only negligibly from the elastic state at
the onset of yielding, a maximum local rate of plastic work is obtained by combining
relations (2), (5), (6), (8), (9) and (11):

ẇp =
[
�̇o(2C

o
44�)

n+1

(�c)n

]∑
(s)

|(gxigxj�o(s)ij + Ag2xr�
o(s)
rr )|n+1


 : (12)

Here �o(s) are the slip tensors in the reference crystal, and the reference value of slip
resistance on each slip system is taken to be the same. Summation over indices i; j
and r, but not x, is implied in relation (12). A is an anisotropy factor of the form

A=
Co11 − Co12 − 2Co44

2Co44
: (13)

Note that the crystallite orientation dependence of ẇp is described in Eq. (12) in
terms of components of the (active) rotation tensor g, which is taken to transform the
reference crystal into the local one. Within the chosen mechanical framework and the
assumptions taken, the local rate of plastic working depends only upon components of
the form gxj, where the index x refers to the x-direction in the beam (Fig. 1). More
precisely, if spherical polar angles "; # de4ne the orientation of the x-direction of the
beam, relative to the crystallographic basis 〈1 0 0〉, then the following relations de4ne
gxj:

gx1 = sin" cos#; gx2 = sin" sin #; gx3 = cos": (14)

3.5. The fundamental zone and fourier representation of the local rate of plastic
working

ẇp possesses the symmetry of the crystal lattice plus a center of inversion; thus the
symmetry subgroup applicable to the problem is G = Oh. It follows that the range of
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interesting spherical-polar angles lies in the asymmetrical unit triangle de4ned by the
set of angle pairs &:

&= {("; #) | 06 #6 '=4; cot−1(sin #)6 "6 '=2}: (15)

& is the “fundamental zone” that is appropriate for the selected mechanical frame-
work. (In mathematical terms, & is also identi4ed with S2=Oh, which is the (homoge-
neous) orbit space of right Oh cosets of S2, formally de4ned as

& ≡ S2=Oh = {{h�1; : : : ; h�NG} | h ∈ S2; �i ∈ Oh}: (16)

Here NG is the order of the symmetry subgroup Oh, which is 48. Further details on
the group-theoretical structure of this and other homogeneous spaces can be found in
Brocker and tom Dieck (1985).)
The local (maximum) rate of plastic working, expressed in Eq. (12), is an example

of a function of the form f :&→ R, where R denotes the real numbers. A complete
set of orthonormal basis functions is available for &; they are known as the cubic
symmetric surface spherical harmonics. These functions shall be given the symbol
˙̇k�l (y), consistent with the notation of Bunge (1982). Here y denotes the unit vector
whose components y = (gx1; gx2; gx3) specify the location of the beam axis relative to
the 〈1 0 0〉 directions in the cubic crystal. Their relation to "; # is given in (14). Any
well-behaved function of the form f :&→ R can thus be expressed as a series of the
form

f(y) =
∞∑
l=0;4

M (l)∑
�=1

F�l
˙̇k�l (y); (17)

where M (l) enumerates the cubic symmetric subspaces associated with the primary
index, l (cf. Bunge, 1982). The ˙̇k�l (y) functions satisfy the orthogonality relationship 4

2&
˙̇k�l (y)

˙̇k�
′

l′ (y) dy = �ll′���′: (18)

It is remarkable that the expression for the local (maximum) rate of plastic working,
Eq. (12), contains powers of the components of y limited by the power-law exponent
to l= 2(n+ 1). It follows that the spectral representation of relation (12) is

ẇp(y)
K

=
2(n+1)∑
l=0;4

M (l)∑
�=1

P�l
˙̇k�l (y); (19)

where K is �̇o(2C
o
44�)

n+1=�nc , and the coeIcients of the series expansion have been
named P�l to remind us that we are dealing with a property of the material. Only
even l will appear in relation (19) owing to the centro-symmetry of the rate of plastic
working; i.e., ẇp(y) = ẇp(−y).

4 Normally, orthogonality relations like the one shown in Eq. (18) would be expressed in terms of a
complex conjugate of the primed basis function. Here, however, the cubic symmetry of the basis functions
dictates that they are real.
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3.6. De;nition of the material set and material hull

Return next to consideration of the primary objective and constraint in connection
with relation (7). The macroscopic (maximum) rate of plastic working is bounded
from above by the volume average of the local (maximum) rate of plastic working,
according to relations (7) and (12). For statistically homogeneous microstructures the
volume fraction of grains that are oriented such that the x-axis of the beam is aligned
with direction y (relative to the crystal basis) can be expressed by an axis distribution
function A(y) (cf. Bunge, 1982):

dV
V

= A(y) dy: (20)

The function A(y) is readily expressed as a Fourier series of the form described in
relation (17), but here we will take a diHerent approach.
Let us consider uni-axial distribution functions of a dirac-delta character. For exam-

ple, suppose that the axial distribution has only grains with orientation yj relative to the
crystal basis. Thus, we de4ne a particular uni-axial distribution, �(y − yj), according
to the conventional recipe:∫ ∫

0
�(y − yj) dy =

{
1 if yj ∈ 0;
0 if yj �∈ 0; (21)

where 0 ⊂ &. These dirac functions can be expressed in a series of the form

�(y − yj) =
∞∑
l=0;4

M (l)∑
�=1

˙̇k�l (yj)
˙̇k�l (y): (22)

Thus, the coeIcients for the dirac distributions are just the cubic symmetric surface
spherical harmonics, themselves, evaluated at yj.

It is now a straightforward matter to specify the material set, which is just the
fundamental zone, but expressed in the Fourier space. We shall use Mc as the symbol
for this set. Note that Mc is an isomorphism of &. Let p denote a point in the
Fourier space. The coordinates of p are the coeIcients of the series expansion F�l .
The in4nite set {F�l } is synonymous with point p. Based upon Eq. (22) it is evident
that the material set, Mc, is described as the set

Mc = {p |p= {F�l }; F�l = ˙̇k�l ("; #); ("; #) ∈ &}: (23)

Fig. 2 shows the material set for the pertinent axis distribution function in the three-
dimensional subspace with coordinates of the type (F1

4 ; F
1
6 ; F

1
8 ). Given that Mc depends

only upon two independent variables, it is evident that it has the form of a surface in
any three-dimensional subspace.
Now consider the class of microstructure representations that are poly-axial dis-

tributions, A(y); these can be formed by summing together an arbitrary number of
uni-axial distributions. If vj denotes the volume fraction associated with Dirac distri-
bution �(y − yj), then the distributions of interest are described by

A(y) =
∑
j

vj�(y − yj) =
∑
j

∞∑
l=0;4

M (l)∑
�=1

vj
˙̇k�l (yj)

˙̇k�l (y)

(∑
j

vj = 1

)
: (24)
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Fig. 2. Depiction of the material set Mc in a three-dimensional subspace.

As a practical matter, all axial distribution functions of interest can be deconstructed
in the form suggested by relation (24). Note that the relevant coeIcients for the
distribution are just

F�l =
∑
j

vj
˙̇k�l (yj) (25)

(If a continuous description of volume fraction is preferred, it can be introduced via
Eq. (20) by replacing the 4nite set of vj weighting factors with A(y) dy.)
We are now in a position to de4ne the material hull comprising all possible mi-

crostructures of relevance to the compliant beam problem (within the context of
Bernoulli–Euler mechanics and the other assumptions taken in formulating the prob-
lem). Expression (25) suggests that by considering the set of all possible sets of Fourier
points {pj} (pj ∈ Mc), 5 and corresponding weighting factors {vj}, subject to the con-
straint that these must sum to one, then all possible axis distributions will have been
considered. But this is just the convex hull of the material set. Thus, the material hull
M, representing all possible microstructures, is the convex hull of the material set
Mc as de;ned by the expression

M =

{
p |p=

∑
j

vjpj; {pj} ∈ ˝Mc; {vj} ∈ ℵ
}
: (26)

Here the set ℵ is formally de4ned to be a particular subset of the power set of X ,
ℵ ⊂ ˝X , where X is the set of real numbers that lie in the interval [0; 1], and all ele-
ments of ℵ must be sets (of weighting factors) that, when summed over their elements,

5 Any such set belongs to the power set of Mc, or ˝Mc.
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Fig. 3. Depiction of the material hull M in a three-dimensional subspace.

equal one. Thus,

ℵ=

{
{vj} | {vj} ∈ ˝X; X = [0; 1];

∑
j

vj = 1

}
: (27)

In simple words, the material hull is comprised of any combination of (physically
distinctive) axial distributions (of the x-axis of the beam), weighted by volume fractions
that sum to one.
Fig. 3 depicts the material hull M of all possible axial distributions pertinent to

the compliant beam problem. As in Fig. 2, only the three-dimensional projection is
shown. It is known that orthogonal projections of convex hulls into any subspace
remain convex (Rockafellar, 1970). Thus, Fig. 3 is just the convex hull of Fig. 2. Note
that the material hull includes the material set: Mc ⊂ M according to relations (26)
and (27).

3.7. The iso-property surfaces

We note that in statistically homogeneous microstructures, the bounding relation (7)
is equivalent to

Ẇ
p
62&A(y)ẇ

p(y) dy: (28)

Expressing A(y) as a series of cubic symmetric surface spherical harmonics, it follows
from relations (18) and (19) that

Ẇ
p

K
6

2(n+1)∑
l=0;4

M (l)∑
�=1

F�l P
�
l : (29)
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Eq. (29) de4nes a closed half-space in on a 4nite subspace of the full spectral rep-
resentation. The dimension of the pertinent subspace is determined by the maximum
size of index l, which is 2(n+ 1).

For the purposes of interest here, the focus is upon the bounding plane of the closed
half-space, which is de4ned by the equation

Ẇ
p

K
=

2(n+1)∑
l=0;4

M (l)∑
�=1

F�l P
�
l : (30)

Given that the zeroth-order coeIcient of the axial distribution, F1
0 , is a constant that

is independent of the distribution itself, we prefer to rewrite Eq. (30) in the following
form:

K ′ =
Ẇ

p
obs

K
− F1

0 P
1
0 =

2(n+1)∑
l=4

M (l)∑
�=1

F�l P
�
l ; (31)

where we have also set Ẇ
p
= Ẇ

p
obs, which de4nes the onset of yielding in the mate-

rial as described earlier. Relation (31), the bounding hyperplane in Fourier space, is
the pertinent iso-property plane associated with the primary objective and primary
constraint of the compliant beam design. The normal to the plane is described by the
coeIcients {P1

4 ; P
1
6 ; : : : ; P

max M(2(n+1))
2(n+1) }. Note that these are dependent upon constants of

the reference crystal and the form of the chosen constitutive relations. All physically
realizable sets of coeIcients, with low-order coeIcients {F1

4 ; F
1
6 ; : : : ; F

max M(2(n+1))
2(n+1) }

selected such that relation (31) is satis4ed, are predicted to achieve the performance
described by the constant K ′. Hence the terminology, “iso-property surface”.
It is not diIcult to show that the secondary constraint on restoring force is also

described by a set of iso-property surfaces of the form

K ′′ = E∗ − Q1
0√
4'

= F1
4 Q

1
4 ; (32)

where Q1
0 = 1:418(Co12 + 2Co44) + 2:128Co44 and Q1

4 = 1:240ACo44. Relation (32) is a
hyperplane perpendicular to the F1

4 coordinate axis in the Fourier space; its position is
entirely 4xed by the elastic constants of the cubic phase, and by E∗.

3.8. Selection of optimal microstructures for the compliant beam

Relations (31) and (32) de4ne the salient iso-property hyperplanes for the compliant
beam. In the case of the primary objective and constraint, embodied in Eq. (31), a range
of performances are predicted based upon where the iso-property hyperplane intersects
the material hull. This range is illustrated for Ni-based alloys in Fig. 4. Note that
the two hyperplanes identi4ed are simple translations, one of the other, parallel to the
plane normal. Hyperplane normals are de4ned by the P�l coeIcients for the particular
cubic phase of interest. Table 1 lists these coeIcients for several cubic phases, for a
power-law exponent of n= 15.
Peak performance of the beam is realized when K ′ is minimized; this is equivalent to

maximizing the ratio of Q=L, or minimizing L for 4xed Q. This occurs for microstruc-
tures where the intersection of the iso-property hyperplane with the F1

4 coordinate is
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Fig. 4. Extremal positions for the primary iso-property hyperplane for Ni-based alloys. (Although diIcult to
visualize, the left extremal plane position intersects the material set, and material hull, at a single (marked)
point. This point of intersection is the ∼ 〈7 7 3〉 axial distribution. See Table 2.)

maximized in the case of Ni-, Fe- and Cu-based alloys, and minimized in the case of
W-, Mo- and Al-based alloys. The associated range of predicted performance associ-
ated with the primary iso-property hyperplanes is recorded in Table 2, along with their
associated axial-distributions.
Consideration of the secondary constraint, embodied in Eq. (32) leads to the con-

clusion that the sign of anisotropy ratio A (see Eq. (13)) determines the variation of
restoring force with respect to coordinate F1

4 . Maximizing K ′′ maximizes the restoring
force (at 4xed beam width), and since A is negative for Al-, Ni-, Fe- and Cu-based
alloys, reducing F1

4 is required to increase the restoring force. For Mo-based alloys the
opposite is true, and for W-alloys the restoring force is insensitive to coordinate F1

4 ,
or any other aspect of microstructure within the framework we have selected. Table 3
lists the Q1

0 and Q1
4 coeIcients for the selected cubic phases.

Note that physically-possible solutions occur only when these iso-property hyper-
planes have non-empty intersection with each other, and with the material hull (de-
scribed by relations (23), (26) and (27)). The relevant solution set is just the set of
all microstructures described by this intersection.
A particular solution set is illustrated in Fig. 5 for the case of Ni-based alloys.

Given that the primary objective and constraint is optimized by pushing the coordinate
F1
4 to be as large as possible, while suIcient restoring force places a limit on how
large F1

4 is allowed to be, a particular compromise is shown in Fig. 5. The gray plane
represents the iso-property plane for the primary objective and constraint, while the
brown plane represents performance in restoring force (secondary constraint). F1

4 has
been shifted some distance oH of the maximum allowable value in order to provide
for the secondary constraint. The intersection of the two hyperplanes falls within the
material hull, but clearly not on the material set. This is highlighted as a yellow line
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Table 1
List of iso-property hyperplane coeIcients, P�l , for relation (32) for selected cubic phases

l � Al Fe Mo Cu Si W Ni

0 1 1:12E − 06 1:42E − 08 1:47E − 04 4:91E − 09 1:41E − 07 7:79E − 06 1:07E − 08
4 1 9:69E − 07 −2:91E − 08 4:74E − 04 −1:38E − 08 −6:22E − 08 1:50E − 05 −2:41E − 08
6 1 1:72E − 06 1:18E − 08 2:24E − 05 −1:89E − 09 2:45E − 07 8:04E − 06 6:19E − 09
8 1 −9:76E − 07 9:29E − 09 −3:03E − 05 5:16E − 09 −5:51E − 08 −6:57E − 06 8:36E − 09

10 1 1:19E − 06 −1:06E − 08 1:98E − 04 −3:64E − 09 3:42E − 08 1:11E − 05 −8:58E − 09
12 1 8:04E − 07 −2:94E − 10 4:49E − 05 −1:81E − 09 9:19E − 08 4:21E − 06 −1:36E − 09
12 2 −8:90E − 07 −2:19E − 08 −1:17E − 04 −8:47E − 09 −1:33E − 07 −6:33E − 06 −1:74E − 08
14 1 −1:33E − 07 −6:83E − 09 7:62E − 05 −1:62E − 09 −6:04E − 08 1:59E − 06 −4:88E − 09
16 1 8:18E − 08 −1:50E − 09 4:44E − 05 1:70E − 10 −1:74E − 08 1:72E − 06 −7:81E − 10
16 2 −2:79E − 07 −8:08E − 11 −4:47E − 05 1:60E − 09 −3:67E − 08 −1:99E − 06 7:54E − 10
18 1 −1:28E − 07 6:22E − 10 7:17E − 06 6:03E − 10 −1:51E − 08 −4:45E − 07 7:43E − 10
18 2 2:64E − 08 −4:38E − 11 1:15E − 05 3:31E − 10 −1:12E − 09 3:71E − 07 1:08E − 10
20 1 −1:74E − 08 2:99E − 10 9:17E − 06 2:55E − 11 −1:26E − 09 8:83E − 08 2:10E − 10
20 2 −5:52E − 08 8:81E − 11 −9:37E − 06 −7:49E − 11 −4:54E − 09 −4:16E − 07 6:40E − 11
22 1 −1:11E − 08 −5:61E − 11 4:01E − 07 −1:06E − 10 −3:99E − 11 −7:61E − 08 −8:60E − 11
22 2 −2:20E − 08 1:31E − 10 9:18E − 07 6:34E − 11 −2:71E − 09 −7:47E − 08 1:33E − 10
24 1 5:59E − 10 −1:94E − 11 1:21E − 06 −7:41E − 12 1:90E − 10 1:26E − 08 −1:86E − 11
24 2 −2:23E − 08 −1:79E − 10 −2:18E − 06 −3:40E − 11 −2:70E − 09 −1:39E − 07 −1:23E − 10
24 3 2:66E − 08 5:52E − 10 7:32E − 07 1:62E − 10 4:83E − 09 1:14E − 07 4:07E − 10
26 1 −1:60E − 09 −1:76E − 11 3:67E − 08 6:50E − 12 −2:46E − 10 −8:53E − 09 −8:02E − 12
26 2 −1:93E − 09 4:91E − 11 −8:71E − 08 5:24E − 12 2:20E − 10 −1:79E − 08 3:21E − 11
28 1 1:16E − 10 −2:97E − 13 1:34E − 07 4:19E − 13 −2:58E − 12 2:24E − 09 1:01E − 13
28 2 −2:82E − 09 1:44E − 11 −3:92E − 07 6:74E − 12 −1:61E − 10 −2:28E − 08 1:28E − 11
28 3 2:95E − 09 −1:59E − 11 1:73E − 07 −1:48E − 11 2:82E − 10 1:74E − 08 −1:77E − 11
30 1 −1:34E − 10 8:86E − 13 −2:78E − 09 8:81E − 15 −1:03E − 11 −8:29E − 10 6:92E − 13
30 2 5:24E − 11 −1:11E − 12 −4:03E − 09 −5:57E − 13 1:87E − 11 −3:87E − 10 −1:13E − 12
30 3 −1:01E − 10 −6:87E − 13 −2:04E − 08 −6:59E − 13 2:41E − 12 −1:24E − 09 −7:84E − 13
32 1 5:36E − 12 1:27E − 14 7:36E − 09 4:12E − 16 2:48E − 14 1:24E − 10 1:07E − 14
32 2 −1:13E − 10 −2:03E − 13 −2:69E − 08 −2:94E − 13 −3:51E − 12 −1:23E − 09 −2:67E − 13
32 3 1:19E − 10 1:92E − 13 1:06E − 08 4:71E − 13 5:96E − 12 8:91E − 10 2:98E − 13

Table 2
Ratio of predicted maximum and minimum beam lengths and their associated axial-distributions for selected
cubic phases (〈u vw〉min is the axial-distribution associated with Lmin and 〈u vw〉max is the axial-distribution
associated with Lmax :)

Al Fe Mo Cu Si W Ni

Lmax − Lmin=Lmin 0.218 0.323 0.431 0.507 0.146 0.300 0.361
〈u vw〉max 〈9 4 0〉 〈7 7 3〉 〈9 3 0〉 〈7 7 3〉 〈8 5 1〉 〈9 4 0〉 〈7 7 3〉
〈u vw〉min 〈1 1 1〉 〈1 0 0〉 〈1 1 1〉 〈1 0 0〉 〈1 0 0〉 〈1 1 1〉 〈1 0 0〉

Table 3
List of Q coeIcients for relation (32) for selected cubic phases (units of 1011 dyn=cm2)

Al Fe Mo Cu Si W Ni

Q1
0 39.800 104.035 154.041 74.433 66.897 184.747 108.707

Q1
4 −0:626 −7:967 3.968 −6:436 −3:559 0.000 −9:312
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Fig. 5. Depiction of the optimal solution set (yellow line segment), formed by the intersection of iso-property
planes for the primary objective and constraint (gray) and the secondary constraint (brown) with the material
hull (blue). Yellow points indicate the microstructure of rolled Ni (left) and rolled+recrystallized Ni (right).

segment in Fig. 5. Note that all members of the set of optimal microstructures are
poly-axial, rather than uni-axial.

3.9. Processing considerations

Next, consider the problem of guiding processing conditions to achieve a microstruc-
ture within the optimal set. An empirical approach is illustrated. The yellow points in
Fig. 5 depict the locations in the Fourier subspace for two nickel-alloy microstruc-
tures that were characterized by the authors. The point to the left is for rolled nickel
alloy, and the point to the right is for the same rolled nickel, but following a subse-
quent recrystallization anneal. Notably, the two microstructures lie on opposite sides
of both selected iso-property planes. Transformation of the deformed microstructure,
by annealing, can be represented as a streamline (not shown) connecting the de-
formed microstructure to the deformed + annealed microstructure. It is evident that this
streamline must pass from left to right, cutting through the iso-property planes some-
where quite near the optimal set in the material hull (yellow line segment). Thus, we
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conclude that deformation, followed by a partial recrystallization annealing treatment
(to be determined) could result in a microstructure near the optimal set.

3.10. Summary of the case study

By way of summary, the application of MSD to the design of the compliant (4xed
guided) beam demonstrates the following principles:

(a) Those aspects of microstructure that are important to any particular design problem
are dictated by the mechanics and physics of the problem. (In the design of a
compliant beam, only the distribution of orientations of the beam axis, with respect
to the crystal basis, is found to be important.)

(b) Spectral representation of the relevant aspects of microstructure has the profound
advantage that the entire universe of possible microstructures can be conveniently
represented. (This is the material hull.)

(c) Design objectives and constraints are conveniently interpreted as families of iso-
property surfaces in the same Fourier space. (These were found to be hyperplanes
in the compliant beam problem. Two such planes were required to represent the
design objective and two constraints in the case study.)

(d) The optimal set of microstructures for a design problem is de4ned by the intersec-
tion of the iso-property plane(s) with the material hull, with the position of those
planes optimally located for design performance. (In the compliant beam, an op-
timal location was determined by a compromise between the competing objective
and constraints of the problem.)

(e) Once the optimal set of microstructures has been identi4ed, guidance for candi-
date processing paths is facilitated by empirical and theoretical considerations in
the Fourier space. (A candidate processing path was identi4ed for producing a
near-optimal microstructure for the compliant beam.)

(f) Treatment of the entire design problem in the spectral representation facilitates a
deeper level of communication between the designer and the materials engineer,
opening up the design space to the consideration of material microstructure as a
design variable, and pointing to solutions where microstructure has been optimized.

4. Extension of MSD to problems of higher dimension

For the case study just presented, MSD required only elementary volume fraction in-
formation on crystal orientation in the microstructure. Two limitations are encountered
when solutions are restricted to volume fraction data. First, although the bounding
aspect of the solution for the compliant beam was not emphasized, bounds on lin-
ear (defect-insensitive) properties, can be rather widely separated. Thus, predictions
of upper- and lower-bounds on defect-insensitive properties (like the elastic stiHness,
thermal conductivity, and initial yield-strength) can be too imprecise to be useful in
solving highly constrained design problems. And second, even the most elementary of
physical models for defect-sensitive properties, like intergranular stress corrosion crack-
ing, require information about the grain boundary character distribution (GBCD) of the
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microstructure. And it is known that the GBCD requires 2-point correlation statistics
on orientation (and=or phase) in the microstructure (Adams and Olson, 1998).
Here we proceed with a brief description of the anticipated extensions required to

carry MSD to a framework of higher dimension. Two objectives will be important:
obtaining more precise bounds on linear properties, and extending MSD to include
defect-sensitive properties. To be precise, we describe the extensions required when the
physical framework of the problem requires the 2-point orientation correlation statistics.
(We restrict our attention to single phase polycrystals, but note that the extension
required for poly-phase materials is straightforward.)

4.1. Improved bounds on linear properties

Reductions in the separation of upper- and lower-bounds on linear properties are pre-
dicted from the variational principles developed by Hashin and Shtrikman (1962a,b).
Theoretical developments of Zeller and Dederichs (1973), Kroner (1977) and Willemse
and Caspers (1979) obtained expressions for bounds on tensors of second and fourth
order, incorporating higher-dimensional representations of microstructure for polycrys-
talline materials. These results were recently reviewed, and examined in a consistent
notation by Adams and Olson (1998). The 4rst application of the higher-dimensional
theories to predict elastic properties in orthotropic polycrystals was reported by Beran
et al. (1996) and Mason and Adams (1999). These incorporated the 2-point orientation
correlation statistics, and demonstrated that the upper- and lower-bounds were narrowed
by a factor of ∼5 as compared to bounds that used only volume fraction data. Com-
parisons with measured elastic constants showed these bounds to be in agreement with
experimental measurements. It is also evident that these narrower bounds are likely to
be of much greater interest in highly constrained design applications.
Consider a convenient bounding relationship that incorporates both 1- and 2-point

statistics (Adams and Olson, 1998):

C∗¡(¿)Cr + A1(A1 + A2)−1A1; (33)

where C∗ is the predicted eHective elastic stiHness of the polycrystalline material. (The
reader should note that relation (33) must be interpreted as bounding the stored elastic
strain energy, rather than individual components of the eHective elastic stiHness tensor
itself.) Cr is a reference stiHness tensor de4ned such that

�C(x) = C(x)− Cr¡(¿)0 (34)

for all positions x in the body of material. The fourth order tensors appearing in relation
(33) are de4ned by

A1 ≡ 〈C〉 − Cr; (35)

where, as before, 〈· · ·〉 denotes volume or ensemble averaging, and by

A2 ≡ 〈�C8r�C〉: (36)

8r signi4es a speci4c integral Green’s function operator that depends upon Cr and the
shape of the body. One-point statistics (volume fractions) are required in relation (35),
and 2-point correlation statistics are required to evaluate relation (36).
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For single-phase materials, the required 2-point orientation correlation statistics can
be expressed in the Fourier space in the manner described by Adams et al. (1987):

f2(g; g′ | r) =
∑
l

∑
�

∑
9

∑
:

∑
�

∑
;

F�n�;l: (r) ˙̇T�9l (g) ˙̇T�;: (g′): (37)

f2(g; g′ | r) expresses the probability density that a randomly placed test vector of
character r will sample orientation g at its tail and orientation g′ at its head. The
functions ˙̇T�9l (g) and ˙̇T�;: (g′) are crystal symmetric generalized spherical harmonic
functions (cf. Bunge, 1982). F�9�;l: (r) are the Fourier coeIcients in the 2-point space.
(That the basis for the 2-point OCFs can be conveniently expressed as a product of
basis functions that are orthogonal over the individual components of its product space,
is a classical result in mathematical physics (cf. Courant and Hilbert, 1937).)
These six-index Fourier coeIcients can be incorporated into relation (36) and then

(33) in order to obtain improved bounds on linear properties. Note that the relevant
fundamental zone for the 2-point framework is the product of two homogeneous spaces:

&= SO(3)=G × SO(3)=G: (38)

As noted in Sections 2 and 3, G in (38) denotes the symmetry subgroup of the relevant
crystal phase or material property, whichever is of higher order. The material set for
each vector r consists of all of the points described by the six-index coeIcients as-
sociated with speci4ed orientation correlation characteristics in the microstructure (i.e.,
speci4ed g and g′). The material hull comprises linear combinations of these charac-
teristics, weighted by number fractions that must sum to one. Although details are not
given here, it is evident that the spectral representation of f2(g; g′ | r), relation (37),
can be incorporated into relation (36) and then into relation (33), in order to form
a family of iso-property surfaces. These surfaces, representing bounds on the stored
elastic strain energy, will no longer be hyperplanes, but more complex surfaces with
curvature.

4.2. Application to defect-sensitive properties

The 4rst-order description of dependence of defect-sensitive properties (e.g., inter-
granular stress corrosion cracking, embrittlement, etc.) on characteristics of the mi-
crostructure is known to be through the GBCD. GBCD refers to the distribution of
characteristics of grain boundaries, as speci4ed by identifying the grain orientation on
each side of the boundary, say g and g′, and the inclination of the boundary tangent
plane, n. The GBCD is here named SV (g; n; g′); it has units of surface area density of
grain boundaries, per unit volume.
There exists a precise stereological connection between the 2-point statistics described

in the previous section, and the GBCD (Adams et al., 1993):

lim
|r|→0

[
2S2

SV (g; n; g′)|r · n| dn= f2(g; g′ | r)
]
: (39)

It is convenient, in connection with the GBCD, to carry the inclination dependence of
the distribution explicitly in the fundamental zone. Thus,

&= SO(3)=G × S2 × SO(3)=G; (40)



1658 B.L. Adams et al. / J. Mech. Phys. Solids 49 (2001) 1639–1663

where S2 is the set of directions that the inclination, n, can take. (It is convenient to
think of S2 as a unit sphere and its origin, with all vectors emanating from the origin
to any point on the surface of the sphere representing possible inclinations, n.) The
spectral representation of SV (g; n; g′) is

SV (g; n; g′) =
∑
l�n

∑
l′�′n′

∑
rs

S�n�
′n′s

ll′r
˙̇T�nl (g) ˙̇T�

′n′

l′ (g′)ksr (n): (41)

(In this expression the ksr (n) functions are surface spherical harmonics, but they are
not symmetrized.) Corresponding to Eq. (41) are characteristic (dirac-like) density
functions that have coeIcients of the form

S�n�
′n′s

ll′r = ˙̇T ∗�n
l (gj) ˙̇T

∗�′n′
l′ (g′j)k

∗s
r (nj); (42)

where ∗ denotes complex conjugation. The relevant material set is just the set of sets of
Fourier coeIcients of the type given in (42), evaluated for all characteristics described
in the fundamental zone (40). The material hull is then the convex hull of the material
set, found by linear combinations of the elements of the material set, subject to their
fractions equaling the total surface area, per unit volume, SV , of grain boundaries in
the polycrystal.
The eight parameter GBCD can be projected into lower-dimension subspaces by

integration. For example, a 4ve-parameter GBCD is de4ned by

S̃V (Tg; n) =A
SO(3)=G

SV (g; n; g ·Tg) dg; (43)

where Tg is the misorientation between adjacent grains. Most of the work with GBCDs
relates to the misorientation distribution function (MDF), M (Tg), which is obtained
by also averaging over the inclination dependence:

M (Tg) =2S2ASO(3)=G

SV (g; n; g ·Tg) dg dn: (44)

These reduced forms of the GBCD, M (Tg) and S̃V (Tg; n), that have thus far been
the focus of empirical correlations between grain boundary character and defect sensi-
tive properties. These correlations have generally linked defect-sensitive properties to
the fraction of occurrence of special classes of grain boundaries vicinal to coincidence
site lattices (CSL). Examples include grain boundary segregation (Bouchet et al., 1988;
Hofmann, 1990; Muschik et al., 1989; Powell and WoodruH, 1976; Watanabe et al.,
1978; Yoshitomi et al., 1995), resistance to corrosion (Lin et al., 1995; Palumbo and
Aust, 1995), stress corrosion cracking (Palumbo et al., 1991; Pan et al., 1996), and
creep (Lehockey and Palumbo, 1997; Lehockey et al., 1997; Was et al., 1998). The ap-
plication of these empirical correlations, in connection with various processing methods
that achieve elevated levels of grain boundaries that are resistant to the various failure
mechanisms, is called “grain boundary engineering” (Watanabe, 1984). It is known, for
example, that repeated deformation (to intermediate strain levels) and annealing cycles
can increase the occurrence of low energy boundaries in materials that twin easily (cf.
Randle and Brown, 1989; King and Schwartz, 1998; Kumar et al., 2000).
To illustrate how these empirical correlations can be incorporated within MSD to

consider design problems where defect sensitive properties are important, consider a
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framework in which S̃V (Tg; n) is the important representation. This is a function with
a series representation of the form

S̃V (Tg; n) =
∑
:�9

∑
�=

S�9=:�
UUT�9: (Tg) ˙̇k=�(n): (45)

As shown here, the misorientation dependence of the function is carried by the (dou-
bly) crystal-symmetric generalized spherical harmonic functions, and the inclination
dependence is described in the local crystal frame by the crystal symmetric surface
spherical harmonic functions (Bunge, 1982; Adams and Olson, 1998). Next, assume
that certain classes of grain boundary types have been identi4ed as “good” in some
sense (e.g., resistant to sensitization or stress corrosion cracking). Let these boundaries
occupy speci4c subsets, &j ⊂ &, of the fundamental zone, which for S̃V (Tg; n) is
identi4ed as

&= G\SO(3)=G × S2=G: (46)

The total surface area per unit volume of “good” boundaries, S̃
+
V , is thus found depend

upon the microstructure according to the relation

S̃
+
V =

∑
:�9

∑
�=

S�9=:�

∑
j
A

&j
2 UUT�9: (Tg) ˙̇k=�(n) dn dTg

=
∑
:�9

∑
�=

S�9=:� B
�9=
:� : (47)

In the spirit of the empiricism that has thus far been advanced, microstructures with
desirable defect-sensitive properties are achieved when

S̃
+
V

S̃V
¿ pc; (48)

where S̃V is the total surface area per unit volume of grain boundary in the material, and
pc is a suitable percolation threshold (cf. Wells et al., 1989; Gaudett and Scully, 1994).
Relation (47) in connection with relation (48) constitutes an iso-property hyperplane
within the empirical framework described.

4.3. Distance measures in the Fourier space

It is evident that the step to higher dimensionality is a demanding one, if only for the
fact that the main representation of microstructure, the 2-point OCFs, have 6 indepen-
dent variables (8 in the case of the full GBCD where the inclination dependence is also
represented in the Fourier series). This is to be compared with 2 independent variables
in the case study presented in Section 3. This higher dimensionality increases the com-
plexity of visualizing the relevant sets in Fourier space using ordinary 3-D graphical
methods. In order to proceed with MSD in this higher dimensional environment, it is
necessary to rely upon metrics for distance in the Fourier space. For example, it may
be necessary to express the distance between pairs of Fourier points (e.g., the distance
between a microstructure, represented by a point in the Fourier space, and a second
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point or collection of points lying upon a speci4ed iso-property surface, or optimal
set). A particular measure of distance is readily available, given that all of the repre-
sentations of microstructure described in this paper (including f2(g; g′ | r)) belong to
the class of square-integrable functions. It follows that a measure of (squared) distance
between two microstructures, say d2(f2; Vf 2)¿ 0, is de4ned by

d2(f2; Vf 2) =AA[f2(g; g′ | r)− Vf 2(g; g
′ | r)]2 dg dg′; (49)

where the integration is over the entire range of all six variables. Expression of distance
in terms of the Fourier coeIcients follows by introducing series expansions of the
form shown in Eq. (37) into the integrand, and then by applying the orthogonality
relationships between the basis functions. The result is

d2(f2; Vf 2) =
∑
l

∑
m

∑
n

∑
:

∑
�

∑
9

(
1

2l+ 1

)(
1

2l+ 1

)

×[Fmn�9l: F∗mn�9
l: − Fmn�9l:

VF
∗mn�9
l: − VF

mn�9
l:

VF
∗mn�9
l: + VF

mn�9
l:

VF
∗mn�9
l: ];

(50)

where ∗ denotes the complex conjugate.

5. Summary

The main purpose of this paper is to demonstrate how design can be conducted
such that information Fow is facilitated in the opposite direction to the conventional
approach, i.e. design objectives=contraints → material properties → microstructure →
processing. This new paradigm, called microstructure sensitive design (MSD), has the
advantage that the microstructure, and its concomitant properties, are considered to be
continuous design variables.
The key to MSD is that all aspects of the problem are formulated with a spectral

representation. When a particular physical framework is chosen to model constitutive
behavior of the material, the dimensionality of the required Fourier space is determined.
Design objectives and constraints are conveniently communicated by speci4c iso-

property surfaces in this space. In the case study presented, two iso-property surfaces
were considered, and they both had the form of hyperplanes residing in a 4nite dimen-
sional. Finite dimensionality is a typical characteristic of iso-property surfaces.
Microstructures are also represented by points in the Fourier space. Two aspects of

microstructure representation were addressed. The complete set of components (“build-
ing blocks”) from which the pertinent microstructures may be constructed was shown
to occupy a compact set in the space, called the material set. Then, from the material
set, we have shown how the universe of all microstructures pertinent to the mechanical
framework of the design are points that reside in the convex hull of the material set.
This convex hull was named the material hull. The material hull includes the mate-
rial set as a subset. Both material set and material hull have in4nite dimension in the
Fourier space.
Intersections of the relevant (4nite-dimensional) iso-property planes with the material

hull (in4nite-dimensional) identify sets of points that represent real physical microstruc-
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tures that can be considered to meet design objectives=constraints. All points belonging
to the intersection set are predicted to have the same performance with respect to the
speci4c objective=constraint represented by the iso-property surface. When more than
one iso-property plane is required by the design problem, then it is the reduced inter-
section of all such iso-property surfaces with the material hull that comprise the set of
microstructures predicted to achieve the combined performance levels predicted by the
several iso-property surfaces.
Optimal sets of microstructures for the speci4ed design problem are found by trans-

lations of the pertinent iso-property surfaces to those limits that are dictated by the
orientation and shape of the surfaces themselves. When the iso-property surfaces are
hyperplanes, as they were in the case study, then translation of the hyperplane to ex-
treme locations intersecting the material hull will maximize performance of the design
with respect to the considered objective=constraint. For the case study, it was demon-
strated that a 〈1 0 0〉 uni-axial distribution of grain orientations was optimal for Ni,
Fe, Cu and Si alloys when considering only the hyperplane representing the primary
objective and constraint. (〈1 1 1〉 axial distributions were found to be optimal for Al,
Mo and W.) However, a second hyperplane, representing the constraint of adequate
restoring force, was shown to restrict the optimal class of microstructures to poly-axial
distributions in the case of Ni.
MSD provides a framework for guiding the development of processing to achieve

microstructures that lie near the optimal set. Much development remains to be done to
properly connect MSD with existing models that describe the evolution of microstruc-
ture. Some work in this direction for deformation processing has been described by
Bunge and Esling (1984). Extensions of this work to a wider scope of processing paths
will be presented in a subsequent paper.
Extensions of MSD to highly constrained design problems is expected to demand

material sets and hulls of higher dimension and complexity. Improved bounds on
linear properties, and extensions to include defect-sensitive properties are both ex-
pected to require constitutive laws that incorporate characteristics of the spatial distri-
bution of orientation (and=or phase) in the microstructure. Elementary treatment of this
additional complexity requires microstructure representation by the 2-point orientation
(and=or phase) correlation functions. Section 4 provides a roadmap that anticipates
these extensions.
There appear to be many advantages of MSD to the design team. We anticipate that

MSD enables eIcient communication between the designer and the materials specialist,
speeds up the design process, allows a much more complete consideration of a rich
family of materials and microstructures, saves time and eHort, and results in superior
design solutions.
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