Modeling of Processing Path of Ti During Mechanical Deformation

Dongsheng Li
Hamid Garmestani
Outline

• Background
• Processing Path Model
 – Processing path function
 – Streamline
• Application in Titanium
 – hexagonal \((\alpha \text{ phase}) \)
 – cubic \((\beta \text{ phase}) \)
• Conclusion
Representation of Texture

ODF is defined as

\[f(g, \eta) = \sum_{l=0}^{\infty} \sum_{m=0}^{M(l)} \sum_{n=0}^{N(l)} F_{l}^{mn}(\eta) F_{l}^{mn}(g) \]

Representation of texture: \(\{F_{l}^{\mu\nu}\} \)

Representation of properties:

\[\overline{e}_{l}^{\mu\nu} = \frac{1}{2l+1} \sum_{\lambda=1}^{M(l)} e_{l}^{\mu\lambda} F_{l}^{\lambda\nu} \quad 0 \leq l \leq r \]

\(r \): order of property
Microstructure Sensitive Design Processing Solutions

Deformed and Annealed

Linear combination provides desired properties
Question:
How to find the processing path from initial microstructure of the raw material to final microstructure with desired properties?
Microstructure Sensitive Design

Design

Properties

Processing path model

Microstructure

Processing methods
Principle of Conservation in Orientation Space

In the orientation space while

$$dv = d\varphi_1 d\varphi d\varphi_2$$

$$dg = \frac{1}{8\pi^2} \sin \varphi d\varphi_1 d\varphi d\varphi_2$$

The normalization relation for texture is:

$$\int \int \int f(g)dg = 1$$

So the density is defined as:

$$\rho = \frac{1}{8\pi^2} f(g) \sin \varphi$$

to satisfy the normalization

$$\int \int \int \rho dV = 1$$
Quantity of matter moving out of the infinitesimal volume

\[R(\phi_1, \phi, \phi_2) \] Rotation field, represent the flow vector of any point \((\phi_1, \phi, \phi_2)\) in this space

flux across the element surface is:

\[\rho R \cdot nd\sigma \]

The quantity of matter moving across \(S\) is:

\[
\oint_S \rho R \cdot nd\sigma = \frac{1}{8\pi^2} \oint_S f(g) \sin \phi R \cdot nd\sigma
\]

\[
= \frac{1}{8\pi^2} \iiint_V \text{div}\{f(g) \sin \phi R\}dV
\]
Change of Quantity of matter in the infinitesimal volume

The increase in the quantity of matter in infinitesimal volume V in unit time is:

$$\frac{\partial}{\partial t} \int \int \int \rho dV$$

$$= \frac{\partial}{\partial t} \int \int \int f(g) \frac{1}{8\pi^2} \sin \phi dV$$
Principle of Conversion in Orientation Space

According to the conservation principle:

\[
\frac{\partial f(g)}{\partial t} + \frac{1}{\sin \phi} \text{div}[f(g) \sin \phi R(g)] = 0
\]

\[
\frac{\partial f(g, \eta)}{\partial t} + \text{div}[f(g, \eta)R(g)] + \text{ctg} \phi f(g, \eta)R(g) = 0
\]

Using the spectral expansion, we have

\[
f(g, \eta) = \sum_{l=0}^{\infty} \sum_{m=0}^{M(l)} \sum_{n=0}^{N(l)} F_{lmn}(\eta)T_{lmn}(g)
\]

Substituting into the conservation principle

\[
\sum_{lmn} \frac{dF_{lmn}(\eta)}{d\eta} \dot{T}_{lmn}(g) + \sum_{\lambda \sigma \rho} F_{\lambda \sigma \rho}(\eta) \left(\text{div} \left(\dot{T}_{\lambda \sigma \rho}(g)R(g) \right) + \text{ctg} \phi \dot{T}_{\lambda \sigma \rho}(g)R(g) \right) = 0
\]
Processing Path Model During Plastic Deformation

\[
\sum_{lmn} \frac{dF_{lmn}^m(\eta)}{d\eta} \dot{T}_{lmn}^m(g) + \sum_{\lambda\sigma\rho} F_{\lambda}^{\sigma\rho}(\eta) \left(\text{div}(\dot{T}_{\lambda}^{\sigma\rho}(g)R(g)) + \text{ctg } \phi \dot{T}_{\lambda}^{\sigma\rho}(g)R(g) \right) = 0
\]

If we define

\[
\text{div}(\dot{T}_{\lambda}^{\sigma\rho}(g)R(g)) + \text{ctg } \phi \dot{T}_{\lambda}^{\sigma\rho}(g)R(g) = -\sum_{lmn} A_{l\lambda}^{mn\sigma\rho} \dot{T}_{lmn}^m(g)
\]

The evolution of F is revealed as:

\[
\frac{dF_{l}^{mn}(\eta)}{d\eta} = \sum_{\lambda\sigma\rho} A_{l\lambda}^{mn\sigma\rho} F_{\lambda}^{\sigma\rho}(\eta)
\]

processing path function

\[
F(\eta) = e^{A\eta} F(\eta_0 = 0)
\]
Processing Path: for Ti (cubic)

In cubic-orthotropical system, $l \leq 4$ when elastic properties are studied. This reduces our interesting texture coefficients to F_{4}^{11}, F_{4}^{12} and F_{4}^{13}

$$\frac{dF_{4}^{11}(\eta)}{d\eta} = \sum_{\lambda=0}^{L_{\max}} \sum_{\sigma=0}^{N(\lambda)} \sum_{\rho=0}^{M(\lambda)} A_{l\lambda}^{\sigma\rho} F_{\lambda}^{\sigma\rho}(\eta)$$

$$= A_{40}^{1111} F_{0}^{11} + A_{44}^{1111} F_{4}^{11} + A_{44}^{1112} F_{4}^{12} + A_{44}^{1113} F_{4}^{13}$$

$$+ A_{46}^{1111} F_{6}^{11} + A_{46}^{1112} F_{6}^{12} + \cdots$$

$$\begin{bmatrix}
\frac{dF_{0}^{11}}{d\eta} \\
\frac{dF_{4}^{11}}{d\eta} \\
\frac{dF_{4}^{12}}{d\eta} \\
\frac{dF_{4}^{13}}{d\eta}
\end{bmatrix} =
\begin{bmatrix}
A_{40}^{1111} & A_{44}^{1111} & A_{44}^{1112} & A_{44}^{1113} & \cdots \\
A_{40}^{1211} & A_{44}^{1211} & A_{44}^{1212} & A_{44}^{1213} & \cdots \\
A_{40}^{1311} & A_{44}^{1311} & A_{44}^{1312} & A_{44}^{1313} & \cdots \\
A_{40}^{1411} & A_{44}^{1411} & A_{44}^{1412} & A_{44}^{1413} & \cdots
\end{bmatrix}
\begin{bmatrix}
F_{0}^{11} \\
F_{4}^{11} \\
F_{4}^{12} \\
F_{4}^{13} \\
\vdots
\end{bmatrix}$$

$$F(\eta) = e^{A\eta} F(\eta_{0} = 0)$$
Processing Path: Simulation Results

Evolution of F411 during uniaxial tension

- Raw data
- Simulated result
The black solid processing path from raw data is indistinguishable from the red dash processing paths simulated using least squares error method. The green dash processing path simulated by strain step as 5% deviates a little from the processing path of raw data. The blue dash processing path simulated by strain step as 2% deviates more.
Processing Path
Improvement of Simulation Performance by increasing the order of A

\[
\frac{dF_{4}^{11}(\eta)}{d\eta} = \sum_{\lambda=0}^{L_{\text{max}}} \sum_{\sigma=0}^{N(\lambda)} \sum_{\rho=0}^{M(\lambda)} A_{l\lambda}^{mn\sigma\rho} F_{\lambda}^{\sigma\rho}(\eta) \quad L_{\text{max}} = 4 \rightarrow 8.
\]

\[
\frac{dF_{4}^{11}(\eta)}{d\eta} = A_{40}^{1111} F_{0}^{11} + A_{44}^{1111} F_{4}^{11} + A_{44}^{1112} F_{4}^{12} + A_{44}^{1113} F_{4}^{13} + \cdots
\]

\[
= A_{40}^{1111} F_{0}^{11} + A_{44}^{1111} F_{4}^{11} + A_{44}^{1112} F_{4}^{12} + A_{44}^{1113} F_{4}^{13} \\
+ A_{46}^{1111} F_{6}^{11} + A_{46}^{1112} F_{6}^{12} + A_{46}^{1113} F_{6}^{13} + \cdots + A_{48}^{1115} F_{8}^{15}
\]
Improvement of Simulation Performance by increasing the order of A

Increasing the order of texture evolution matrix A will improve the performance of simulation.
Streamline

Processing Path Function: \(F(\eta) = e^{A\eta} F(\eta_0 = 0) \)

If texture evolution matrix \(A \) is decomposed into:

\[
A = PLP^{-1}
\]

\[
L = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \cdots \\
 a_n
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
 \vec{a}_1 \\
 \vec{a}_2 \\
 \cdots \\
 \vec{a}_n
\end{bmatrix}
\]

After a series of mathematical derivation, streamline is obtained:

\[
\eta = \ln \left(\frac{P^{-1} F(\eta) \cdot e^m}{P^{-1} F(\eta_0 = 0) \cdot e^m} \right)
\]

\[
\eta = \frac{P^{-1} F(\eta) \cdot e^m}{a_m}
\]
Streamline

Streamline function is obtained by substituting \(\eta \) back to processing path function

\[
F(\eta) = \exp \left(\ln \left(\frac{P^{-1} F(\eta) \cdot e^m}{P^{-1} F(\eta_0) \cdot e^m} \right) \frac{A}{a_m} \right) F(\eta_0 = 0)
\]
Application of processing path model in other processing method

Evolution of F411 during uniaxial compression

- F411 raw data
- F411 simulated result
Application of processing path model in Ti (hexagonal)

In hexagonal-orthotropic case, 5 nonzero interesting texture coefficients are needed to describe the elastic properties. They are F_{211}^1, F_{212}^1, F_{411}^1, F_{412}^1 and F_{413}^1. Texture evolution matrix A is obtained from the raw data. Using A, evolution of the texture coefficients is simulated below:
Application of processing path model in Ti (hexagonal)

Evolution of F411 in titanium during rolling

Evolution of F412 in titanium during rolling

Evolution of F413 in titanium during rolling

This model not only works in cubic materials, but also works well in hexagonal materials (α phase)
In prediction of texture evolution of Ti (hexagonal)

The obtained texture evolution matrix A is good in rolling. For a sample stretched 5%, apply the same A to simulate the texture evolution during rolling and compare the result from the model:
In prediction of texture evolution of Ti (hexagonal)

Evolution of F411 in sample stretched 5%

Conclusion:

The prediction using texture evolution matrix A can extrapolate to other microstructure in the material hull.
Answer

Q: How to find the processing path from initial microstructure of the raw material to final microstructure with desired properties?

A: Using streamline in processing path model
Processing Solutions in Material Space

Streamline in material Hull

Rolling

Drawing

Streamline on material set
Simulation of texture evolution in Ti(α) using crystal plasticity model

(0002) Pole Figure Results

Experimental

Simulated

TD

undeformed

Cold Rolled 60%

Cold Rolled 80%

Cold Rolled 95%
Processing Path: an Example

strain step=1%, initial strain set includes 29%, 30%, 31%, 32%, 33%
strain step=2%, initial strain set includes 26%, 28%, 30%, 32%, 34%
strain step=5%, initial strain set includes 25%, 30%, 35%, 40%, 45%

least squares error method, initial strains set includes 30%, 31%, 32%, ..., 40%

The undeformed texture is random
Uniaxial tension
Using simulated data from Taylor model (crystal plasticity) as raw experimental data
Conclusion

- Any microstructure (texture) is represented by a point in the material hull
- Processing path function and streamline can simulate and predict texture evolution during processing
- Using the streamlines for different processing method can solve and optimize processing path
Thank you!

The End