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Generalized plane strain analysis of superconducting solenoids
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A stress analysis of superconducting solenoids is presented which includes a generalized plane
strain~GPS! condition for the axial strain. The GPS condition is introduced on the assumption that
the deformation of a solenoid from a right circular cylinder is small. The GPS assumption results in
an analytic solution for all three components of stress and strain in a solenoid. The work is presented
in the context of the historical development of stress analysis for solenoids. The general stress
equations for a magnetic solenoid are formulated. The relationship between a right cylinder
deformation and the generalized plane strain condition is examined for the physical conditions in the
central region of a solenoid magnet. The general analytic solutions of the stress equations are given
for the cases of magnetic and thermal loading. The constant coefficients are determined for cases of
common interest in solenoid magnet design. The analytic results are compared with numerical
analysis results for an example solenoid consisting of a single coil with external reinforcement. In
particular, the degree to which the axial strain is a constant and satisfies the GPS assumption is
examined for the example solenoid. The analysis reveals features of the axial stress in solenoids,
including the Poisson’s ratio induced axial stress and the axial stress distribution between coil and
reinforcement during cooldown and operation. The strong agreement between the GPS and
numerical analysis results shows that the assumptions contained in the GPS analysis accurately
represent the conditions in the central region of a solenoid magnet. ©1999 American Institute of
Physics.@S0021-8979~99!01024-5#
o
si
y
n
iz
an
tre
nd
o
an

n-
n
te
pe
l a
al
ia
ily

es
te
th
ld

ag-
re-
to
es
ion.
dial
ven
eal
ut
ed

on,
ld a
ree

m-
ac-
n
e-
rom
PS
the

onal
tal
ical

ral
t are
be
I. INTRODUCTION

The mechanical stress analysis of superconducting s
noid magnets is an essential and integral part of the de
process. The windings of a high field solenoid are typicall
complex composite material of conductor, reinforceme
and insulation. As magnets increase in field and bore s
the windings are subjected to increasing values of mech
cal stress, and a more complete understanding of the s
distribution is required. Here, the detailed formulation a
solution of a three dimensional analysis of stress in solen
magnets under the limiting assumption of generalized pl
strain ~GPS! is presented.

A solenoid magnet is a cylindrical structure with a no
uniform distributed body force. A magnet may be co
structed from a number of coils of increasing diameter nes
together and, as will be assumed here, mechanically inde
dent except for alignment. A magnet can be a single coi
well. Within a coil, the dominant magnetic force is radi
outward. In addition, there is a significant load from the ax
component of magnetic force which is distributed primar
near the ends of a coil. The problem of stress analysis
solenoid coils is made difficult by a degree of bending,
pecially toward the ends of a coil, which has an associa
shear stress, and by the lack of a closed analytic form for
distributed magnetic load, which originates from the fie

a!Electronic mail: markwcz@magnet.fsu.edu
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produced by the entire set of coils which constitute the m
net. Historically, the analytical treatments have been
stricted to two dimensions with assumptions suitable only
the coil midplane. The dominant radial magnetic force giv
rise to a reaction stress in the tangential, or hoop, direct
The two dimensional analyses treat the tangential and ra
components of stress. But the actual stress distribution, e
in the midplane, is inherently three dimensional. As an id
limiting condition, it is assumed that the central region abo
the midplane of a solenoid coil is in a state of generaliz
axial plane strain. It is found that with the GPS assumpti
the resulting stress equations can be solved directly to yie
solution which displays the essential aspects of the full th
dimensional conditions at the solenoid midplane.

A superconducting magnet must be cooled to low te
perature for operation. An anisotropy in the thermal contr
tion of the windings, or a difference in thermal contractio
between windings and reinforcement will result in a m
chanical stress. That mechanical stress which results f
thermal contraction is called the thermal stress. The G
assumption is applied to the thermal stress, and as with
mechanical stress from magnetic loads, a three dimensi
solution is obtained. Within a linear elastic model, the to
stress in a solenoid is the superposition of the mechan
and thermal stress.

Here, in a systematic way, the form of the most gene
stress balance equations for a cylindrical solenoid magne
first formulated. The assumption of GPS is then shown to
9 © 1999 American Institute of Physics
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related to the displacement and loading in the central reg
of a solenoid. Under the assumption of GPS, the stress
ance equations for the mechanical stress problem and fo
thermal stress problem are formulated. The general solut
to these equations are first expressed in terms of cons
coefficients. To complete the full analytical solutions, t
detailed derivations of the constant coefficients for confi
rations of usual interest are then given.

II. MATERIALS PROPERTIES

This stress analysis applies to the windings of a cylind
cal solenoid. It is assumed that the principle material dir
tions are aligned with the cylindrical coordinate axes. Co
may be layer wound of round or rectangular conductor. I
helical winding, the cylindrical coordinate axes are an a
proximation to the principle material axes in any layer. F
many coil constructions, the pitch angle of the windin
along the cylindrical axis is zero except for a short arc len
in which a jog occurs to move the wire along the axis. E
cept in these jog regions, the wire is aligned with the co
dinate axes. Coils may also be pancake wound of tape
ductor, in which case the conductor is always aligned w
the coordinate axes except for localized connections at
inner and outer radius of the coil.

The materials properties in the direction along the c
ductor are dominated by the properties of the conducto
self. The analysis assumes a uniform current density, wh
is the case for a coil wound of a uniform cross section c
ductor with a uniform distribution of insulation. The insula
tion in a coil tends to have a lower elastic modulus than
conductor. As a result, the materials properties in the dir
tions transverse to the conductor can be strongly influen
by the insulation. Furthermore, it is not uncommon to hav
different insulation system between layers than betw
turns, in the form of an insulation sheet or cloth betwe
layers in addition to the insulation on the individual wire
These factors are reflected in the assumption that the w
ings are a homogeneous and orthotropic material in the p
cipal material axes, for both mechanical properties and th
mal contraction.

The windings of a coil may be reinforced. The reinforc
ment can take the form of a shell around the cylindri
windings or may be distributed among the windings. An e
ternal shell may be a homogeneous solid cylinder or may
a winding of reinforcement wire similar to the conduct
windings. The reinforcement is likewise assumed to be
mogeneous and orthotropic.

The windings of a coil are thus a composite mater
consisting of conductor, insulation, and possibly distribu
reinforcement. The principles of macromechanics of co
posites are well suited to the computation of the aver
material properties of the windings.1 The stress analysis i
formulated in terms of the average materials properties,
the results are the average stress and strain.

In the principle material coordinates, the general form
the stress–strain relations for an orthotropic material is
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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F s1

s2

s3

t23

t31

t12

G53
C11 C21 C31 0 0 0

C12 C22 C32 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

4 F
e1

e2

e3

g23

g31

g12

G
~1!

in a commonly used mixture of contracted notation for
normal stress and strain~s,e! and engineering notation fo
the shear stress and strain~t,g!, and where theCi j are the
components of the stiffness matrix. In the formulation of
solenoid stress problem, it is seen that there is no coup
between the normal stress and the shear strain. Each co
nent of the shear strain is related to the component of s
stress in the same plane.

The compliance matrix formulation is most useful to o
tain the compliance matrix elements from the enginee
constants. The symmetric compliance matrix for an ortho
pic material is given by

Si j 5

l

1

E1
2

n21

E2
2

n31

E3
0 0 0

2
n12

E1

1

E2
2

n32

E3
0 0 0

2
n13

E1
2

n23

E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G31
0

0 0 0 0 0
1

G12

m
, ~2!

where theEi are Young’s moduli, theGi j are shear moduli
and then i j 52e j /e i , are Poisson’s ratios. The stiffnessC is
obtained from the complianceS by matrix inversion.

A thermal strain is associated with the cooldown of
superconducting coil to operating temperature. The ther
contraction strain

e i
th5a iDT ~3!

is assumed to have no shear components in the prin
material axes.

III. STRESS BALANCE EQUATIONS FOR MAGNETIC
SOLENOID, GENERAL FORM

In the cylindrical coordinates (r ,u,z), the uniform cur-
rent densityJu gives rise to field componentsBz and Br ,
which are independent ofu. The distributed Lorentz forc
density per unit volume of the windings has components

Xr5JuBz ,

Xz52JuBr .
~4!
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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The general displacement of a point in a cylinder may
described by components (u,v,w) along the coordinate axe
as a function of position throughout the cylinder. On t
basis of the symmetry of a solenoid winding, the symme
of the Lorentz force density, and the assumption of homo
neous material properties including the thermal contract
the general form of the displacement in a magnetic solen
under both the thermal contraction loading, and the Lore
force loading will be

u5u~r ,z!,

v50, ~5!

w5w~r ,z!.

The strain–displacement relations of continuum mecha
are well known, relating the displacement to the total stra
The total strain at any point is the sum of the total mecha
cal strain and the thermal contraction strain. For the ab
form of displacement, the nonzero components of strain

e r
tot5e r1a rDT5

]u

]r
,

eu
tot5eu1auDT5

u

r
,

~6!

ez
tot5ez1azDT5

]w

]z
,

g rz
tot5g rz5

]u

]z
1

]w

]r
,

where it should be noted that the total mechanical strai
the sum of the mechanical strain resulting from the magn
loads and the mechanical strain resulting from the ther
contraction loads. In particular, it is seen that the compone
g ru andguz of the shear strain are zero. From the form of t
stress–strain relations, it is evident that in an orthotro
magnetic solenoid the shear stress componentst ru and tuz

are also zero.
The general stress balance equations for a body wi

distributed force are well known. For a magnetic soleno
given the above discussion, the nonzero components of s
reduce tos r , su , sz , andt rz . Accordingly, the most gen
eral form of the stress equilibrium equations for a magne
solenoid are

]s r

]r
1

]t rz

]z
1

s r2su

r
1Xr50,

~7!
]t rz

]r
1

]sz

]z
1

t rz

r
1Xz50,

where, in the case of thermal stress only, the distributed
chanical loadX is zero.

IV. HISTORICAL REVIEW

The problem of solenoid stress and strain as formula
in the above equations has been addressed over an exte
period of time with increasing generality. A good survey
especially the earlier literature is given by Bobrov.2 The ma-
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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jor developments in the evolution of an analytical treatm
are reviewed here, relating assumptions and simplificati
made by various authors in the treatment of the forgo
equations.

The present work is in the line of development that
characterized by the work of Lontai and Marston.3 In this
work, the windings were assumed to be a homogeneous,
ear elastic material, with constant current density subjec
the distributed Lorentz body force. The equations are form
lated in terms of the displacement of the windings and
relationship of the displacement to the strain. The solutio
are obtained for coils with external reinforcement by app
ing the general solutions to each radial section and match
boundary conditions in order to determine coefficient valu

Limiting assumptions imposed by Lontai and Marst
were isotropic material properties, a linear dependence of
axial magnetic field with radius, and zero shear. The ax
force was also taken to be zero to yield a two dimensio
plane stress solution. Later analyses examined cases o
creasingly general assumptions. Many of these analyses
limited to the plane stress condition of zero axial stress.

The analysis of Burkhard4 makes the same assumptio
of isotropic material, two dimensional plane stress, and
ear field distribution. In this treatment, there is an empha
on coils of many radial sections and the formalism f
matching the boundary conditions is well developed.

The mechanical properties of the conductor are quite
ferent than the properties of the insulation between tur
There can be a significant difference in average propertie
the windings depending on direction, especially longitudin
and transverse to the conductor. Gray and Ballou5 introduced
transverse isotropic material properties into a tw
dimensional analysis which preserved the plane stress
sumption. The analysis includes a detailed examination
the usual simplifying assumption that the decrease of
axial field through the windings is linear.

In a very comprehensive treatment, Arp6 examined stress
in superconducting solenoids from fabrication~winding
stress!, cooldown~thermal stress!, and operation~magnetic
stress!. Along with a brief discussion of the composite natu
of the windings, orthotropic material properties are intr
duced. The shear stress is again assumed to be zero. A
damentally two dimensional analysis is formulated for bo
plane stress and plane strain assumptions for the axial d
tion. The presence of axial forces is acknowledged and
cussed qualitatively. A comparison is made between the t
dimensional analysis and a three-dimensional finite elem
numerical calculation of an example coil which includ
axial forces.

In all of these analytical treatments, the axial stress
either set to zero or introduced in an approximate w
through superposition. In a solenoid, the tangential stress
strain are dominant in magnitude and relatively independ
of the axial stress, accounting for the relative lack of atte
tion given to the axial stress. As coils become larger,
axial stress becomes more important for magnet design.
is due partly to the stress and strain dependence of high
superconductors. It is also due to the coupling of exter
reinforcement to the axial stress distribution.
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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The usual assumption in the preceding analyses is
the average current density is a constant in the section o
solenoid for which the equations are being formulated. T
corresponds to the case when a conductor of a given siz
wound with a constant amount of insulation, and possibl
constant amount of distributed reinforcement. A more g
eral case would allow a nonuniform amount of distribut
reinforcement, resulting in a nonuniform current density
the coil section. In the context of examining such a ca
Mitchell and Mszanowski7 formulate the solenoid stres
problem in three dimensions. As in the preceding tw
dimensional analyses, simplifications are introduced by
suming zero shear stress and isotropic material proper
The further assumption is made, stated as following the c
vention for pressure vessels, that the axial strain is cons
through the windings. It is further noted that through a rad
section of the windings, axial force balance is achieved w
the axial stress integrated over that section equals the ap
axial load on the section. For the special case of a unifo
current density solenoid, the differential equation for t
axial stress is given and from the form of the equation a
the numerical solutions that were obtained, general asp
of the axial stress distribution in solenoids were inferre
Namely, the axial stress was seen to be nonuniform, wit
monotonically decreasing value from the inside of the so
noid outward through the windings, and with the possibil
of a positive tension at the bore.

An examination of the axial stress distribution in so
noids, with and without external reinforcement, was made
Markiewicz et al.8 It was noted that, directly from the con
stitutive equation for the axial strain, the nonuniform dist
bution of tangential and radial stress in a solenoid w
couple through the Poisson ratio to give a nonuniform ax
stress. The condition of a constant axial strain through
central region of a solenoid is introduced on the physi
grounds that, to a high degree, solenoids remain a right
inder in operation. The requirement that in the absence
axial loading, the Poisson ratio induced axial stress balan
to a zero net axial force leads directly to a value of t
constant axial strain.

The assumptions of constant axial strain and zero sh
were then shown to give a full three-dimensional solution
the stress balance equations in a GPS analysis.9 The material
properties were assumed fully orthotropic, linear elastic. T
solutions for the mechanical stress were presented in gen
form with constant coefficients. The solution was demo
strated with examples.

From the results, a physical picture of the stress in
solenoid emerges. The tangential stress dominates as a
tion to the radial component of the Lorentz force. The ta
gential stress is coupled through displacements to the ra
stress, which predominantly determine the inplane stra
From the in-plane stress, the Poisson ratio results in an a
stress as well. The Poisson ratio axial stress combines
the axial stress induced by the axial loads, both magnetic
thermal, to give the total axial load. The radial magne
force loading is relatively uniform in the central region of
solenoid, but decreases toward the end. In a long coil,
axial load originates predominately toward the end of
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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coil. The radial dependence of the axial load at the end o
coil redistributes to produce a relatively uniform axial loa
over the central region of the solenoid. In this picture, t
influences tending to distort the center of a coil from
straight cylindrical shape, including the nonuniform rad
loading at the end of the coil, and the Poisson ratio stress
taken to be relatively small. The assumption is made that
solenoid remains a right cylinder and this is expressed a
constant value of the axial strain.

The only generality not addressed by the GPS analys
shear. A formulation was demonstrated by Coxet al.10 in
which the shear component of the equations could be
tained by employing a power series form for both field a
strain. The resulting mathematical formalism expands d
matically in complexity with the inclusion of shear, so muc
as to perhaps reach a point of diminishing returns betwee
analytical solution and a numerical solution. Thus, while t
possibility of a more general formalism exists, at least in
series approximation, the experience has been that GPS
fers a useful and accessible treatment of the thr
dimensional stress in solenoids. The derivation of the eq
tions was presented earlier for the mechanical loads.9 Here,
the equations for both mechanical and thermal contrac
stress, together with the evaluation of the coefficients for
primary configurations of application are given.

V. GENERALIZED PLANE STRAIN ASSUMPTION

The objective leading to the GPS analysis is to find
analytical solution to the stress balance equations that
cludes the essential aspects of the axial stress. The simp
ing assumption of GPS is introduced on the basis of gen
physical considerations. The validity of the assumption, a
the accuracy of the resulting solution to describe magn
solenoid configurations of interest, is judged by comparis
with numerical solutions.

The dominant loads on a solenoid are the outward ra
component and the axial compression component of the L
entz force. In a long solenoid, the radial force is relative
uniform along the length and the axial force occurs primar
toward the ends of the coil. The primary response of a co
to expand radially and compress axially. The fundamen
assumption of the analysis is that the associated deforma
takes the initial right cylinder of the solenoid into a rig
cylinder in such a way that the displacement vector has c
ponents with the functional form

u5u~r !,
~8!

w5w~z!.

This deformation maintains the lines of constantr parallel
with the z axis, and the planes of constantz normal to thez
axis.

A single coil may be constructed as a compound c
with a number of distinct radial sections in contact alo
common cylindrical boundaries. The radial sections may
distinguished by their material properties and current d
sity. Importantly, in coils with more than one radial sectio
the above assumption applies to all radial sections uniform
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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For this assumed right cylinder deformation, it is o
served from the strain–displacement relations that the s
straing rz is zero, and from the form of the material prope
ties that the associated shear stress is zero. It is also see
the functional dependence of the normal strains is

e r5e r~r !,

eu5eu~r !, ~9!

ez5ez~z!.

Therefore, the assumed right cylinder deformation leads
the condition that at any given axial location the axial str
ez is a constant as a function of the radius, and that
applies to both simple and compound coils.

With the shear being zero, the second stress bala
equation reduces to

]sz

]z
1Xz50. ~10!

Using the stress–strain relations and the functional dep
dence of the strain, this equation is expressed as

Czz

]ez

]z
1Xz50. ~11!

The further assumption is made that the analysis applie
the central region of a long solenoid. The axial force dens
Xz in the central region is small, being zero at the midpla
contributes a small amount to the total axial load, and
taken to be zero in the present approximation. The resu
the right cylinder deformation and axial force assumption
that the axial strain is constant in the central region:

ez5constant. ~12!

Thus the assumptions imply a state of axial plane strain.
The above discussion is formulated in terms of the m

chanical stress and strain associated with magnetic f
loads, in recognition of the importance of magnetic loads
solenoid stress. The same discussion can be applied to
thermal case with the conclusion that the axial mechan
strain from thermal loads is constant within a single c
section, and that the total axial strain is constant over
radial sections of a compound coil:

ez
tot5constant. ~13!

Essential to this constant axial strain result is the
sumption of a right cylinder deformation. Another descr
tion of this assumption is that no bending is induced in
solenoid by the magnetic loads or thermal contraction loa
In fact, there are several ways that a degree of bendin
induced. The radial force is not entirely uniform along t
length of a solenoid, but typically decreases toward the e
The radial force is highly nonuniform through the thickne
of a coil, falling off nearly linearly with radius, resulting in
nonuniform Poisson ratio stress. The axial force at the en
a coil is not uniform through the thickness of a coil, b
typically has a roughly parabolic shape. Also, the axial th
mal contraction may differ in different radial sections of
coil. The assumption made here is that the bending ass
ated with each of these conditions, and the associated v
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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tion in axial strain, is sufficiently small in comparison wit
the constant value in the absence of bending as to be se
a variation about a first order constant value.

VI. STRESS BALANCE EQUATION, GPS
APPROXIMATION

From the functional form of the strain, the normal com
ponents of the stress are reduced to functions of the ra
only. The approximation is made that the axial fieldBz , and
the associated force density in the windingsXr , are also
independent ofz and a function ofr only. Along with the
result that the shear stress is zero, the force balance equ
under the assumption of GPS takes the form

ds r

dr
1

s r2su

r
1Xr50, ~14!

whereXr is zero for the case of thermal stress only.

A. Mechanical stress, general solution

The case of Lorentz force loading only is first examine
The thermal contractions in the strain–displacement re
tions, Eq. ~6!, are then zero. Combining the strain
displacement with the stress–strain relations, Eq.~1!, the
stress as a function of displacement is introduced into
stress balance equation to yield

Crr

d

dr S r
du

dr D2Cuu

u

r
1~Crz2Cuz!ez52rJuBz~r !.

~15!

The assumption is made that the radial distribution of
axial field is linear. This assumption is not fundamental
the analysis and with changes in the following algebra
higher order polynomial form of the field dependence co
be adopted. The accuracy of the assumption has been stu
in some detail.5 The axial field of a coil or coil section o
constant current density is given by Eq.~16! where the con-
stantsBc and C0 are determined by the values ofBz at the
inside and outside radius:

Bz~r !5Bc2C0r . ~16!

Incorporating Eq.~16! in Eq. ~15! yields Eq.~17!, where the
customary variablek is the anisotropy factor given in
Eq. ~18!:

r
d2u

dr2 1
du

dr
2k2

u

r
52

JuBc

Crr
r 1

JuC0

Crr
r 22

~Crz2Cuz!

Crr
ez

~17!

k25
Cuu

Crr
. ~18!

The general solution of Eq.~17! may be written in the
form

u5D1r k1D2r 2k1A1ezr 1A2r 21A3r 3, ~19!

where the known constants are given as

A152
1

~12k2!

~Crz2Cuz!

Crr
,

ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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A252
1

~42k2!

JuBc

Crr
, ~20!

A35
1

~92k2!

JuC0

Crr
.

By inspection, there are three singular values of the
isotropy parameterk. When k has the value 1, 2, or 3, th
associated constantA is replaced in the general solution b
the corresponding functionA in Eqs.~21!, ~22!, or ~23!, re-
spectively:

A1~r !52
1

2

~Crz2Cuz!

Crr
ln r ~21!

A2~r !52
1

4

JuBc

Crr
ln r ~22!

A3~r !51
1

6

JuC0

Crr
ln r . ~23!

In the remainder of the analysis, nonsingular values ofk are
assumed.

The solution for the displacement is used in Eqs.~6! and
~1! to yield expressions for the three-dimensional state
stress and strain as follows:

eu5D1r k211D2r 2k211A1ez1A2r 1A3r 2, ~24!

e r5kD1r k212kD2r 2k211A1ez12A2r 13A3r 2, ~25!

su5~Cuu1kCur !D1r k211~Cuu2kCur !D2r 2k21

1~Cuu1Cur !A1ez1~Cuu12Cur !A2r

1~Cuu13Cur !A3r 21Cuzez , ~26!

s r5~Cur1kCrr !D1r k211~Cur2kCrr !D2r 2k21

1~Cur1Crr !A1ez1~Cur12Crr !A2r

1~Cur13Crr !A3r 21Crzez , ~27!

sz5~Cuz1kCrz!D1r k211~Cuz2kCrz!D2r 2k21

1~Cuz1Crz!A1ez1~Cuz12Crz!A2r

1~Cuz13Crz!A3r 21Czzez . ~28!

These equations, together with the value of the coe
cientsD1 andD2 , plus the value of the constant strainez ,
determine the distribution of stress and strain in a given c

B. Equations for coefficients

The general solution to the stress balance equation
be applied to a coil with a number of distinct, yet mecha
cally connected radial sections, the sections being differe
ated by mechanical properties and current density. The s
tion for the coefficientsD1 andD2 results from the boundary
conditions associated with each radial coil section. Fo
stand-alone coil with a single section, the radial stress at
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
-
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il.

ay
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ti-
lu-

a
e

inside and outside radius will be zero. For a coil with seve
radial sections, additional conditions result from the contin
ity of the radial stress and radial displacement at the interf
between each section. In this way, the number of equat
which results is equal to the number of coefficientsD. An
additional equation is required to determine the unkno
value of the axial strain.

Using the concept of a plane through the coil at a giv
axial location, the static equilibrium of the coil requires th
the local product of stress times area accumulated over
plane is equal to the total applied axial load. Thus, on a pl
through the coil at an axial positionz,

E
a1

an11
2prszdr5Fz , ~29!

wherea1 andan11 are the inside and outside radii of a co
which hasn distinct radial sections, andFz is the total axial
Lorentz force between the plane and the end of the coil o
all radial sections. This equation provides the additional c
dition necessary to determine the axial strain.

1. Coefficients for single section coil

For a single section coil with constant current dens
and uniform material properties, the boundary conditions

s r50 at r 5a1 , ~30!

s r50 at r 5a2 , ~31!

E
a1

a2
2prszdr5Fz . ~32!

Evaluating Eq.~27! at the inner radius results in

a11D11a12D21a13ez5b1 , ~33!

where the constants are given by

a115~Cur1kCrr !a1
k21,

a125~Cur2kCrr !a1
2k21,

~34!

a135~Cur1Crr !A11Crz ,

b152~Cur12Crr !A2a12~Cur13Crr !A3a1
2.

Evaluating Eq.~27! at the outer radius results in

a21D11a22D21a23ez5b2 , ~35!

where the constants are given by

a215~Cur1kCrr !a2
k21,
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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a225~Cur2kCrr !a2
2k21,

~36!
a235a13,

b252~Cur12Crr !A2a22~Cur13Crr !A3a2
2.

Integrating Eq.~28! in Eq. ~32! results in

a31D11a32D21a33ez5b3 , ~37!

where the constants are given by

a315~Cuz1kCrz!
a2

k112a1
k11

k11
,

a325~Cuz2kCrz!
a2

2k112a1
2k11

2k11
,

~38!

a335@~Cuz1Crz!A11Czz#
a2

22a1
2

2
,

b35
Fz

2p
2~Cuz12Crz!A2

a2
32a1

3

3

2~Cuz13Crz!A3

a2
42a1

4

4
.

The set of linear Eqs.~33!, ~35!, and~37! may be written
in matrix form

F a11 a12 a13

a21 a22 a23

a31 a32 a33

G FD1

D2

ez

G5F b1

b2

b3

G ~39!

which is solved in the standard way as

FD1

D2

ez

G5F a11 a12 a13

a21 a22 a23

a31 a32 a33

G21F b1

b2

b3

G . ~40!

2. Coefficients for single section coil with external
reinforcement

For a single section coil with reinforcement, the boun
ary conditions are applied to the coil section and the re
forcement.

s r
~1!50 at r 5a1 , ~41!

s r
~1!5s r

~2! at r 5a2 , ~42!

ur
~1!5ur

~2! at r 5a2 , ~43!

s r
~2!50 at r 5a3 . ~44!

The axial force equilibrium applies to the coil and rei
forcement

E
a1

a3
2prszdr5Fz . ~45!

Evaluating Eq.~27! at the inner radius results in

a11D11a12D21a15ez5b1 , ~46!

where the constants are given by
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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a115~Cur1kCrr !a1
k21,

a125~Cur2kCrr !a1
2k21,

~47!
a155~Cur1Crr !A11Crz ,

b152~Cur12Crr !A2a12~Cur13Crr !A3a1
2.

Evaluating Eq.~27! at the interface between the coil an
the reinforcement results in

a21D11a22D21a23D181a24D281a25ez5b2 , ~48!

where the constants are given by

a215~Cur1kCrr !a2
k21,

a225~Cur2kCrr !a2
2k21,

a2352~Cur8 1k8Crr8 !a2
k821,

~49!
a2452~Cur8 2k8Crr8 !a2

2k821,

a255@~Cur1Crr !A11Crz#2@~Cur8 1Crr8 !A181Crz8 #,

b252~Cur12Crr !A2a22~Cur13Crr !A3a2
2

and where the unprimed quantities refer to the coil and
primed quantities refer to the reinforcement.

Evaluating Eq.~19! for the displacement at the interfac
results in

a31D11a32D21a33D181a34D281a35ez5b3 , ~50!

where the constants are given by

a315a2
k ,

a325a2
2k ,

a3352a2
k8 ,

~51!
a3452a2

2k8 ,

a355A1a22A18a2 ,

b352A2a2
22A3a2

3.

Evaluating Eq.~27! at the outside radius of the reinforce
ment results in

a43D181a44D281a45ez50, ~52!

where the constants are given by

a435~Cur8 1k8Crr8 !a3
k821,

a445~Cur8 2k8Crr8 !a3
2k821, ~53!

a455~Cur8 1Crr8 !A181Crz8 .

Integrating Eq.~28! through coil and reinforcement in
Eq. ~45! results in

a51D11a52D21a53D181a54D281a55ez5b5 , ~54!
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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where the constants are given by

a515~Cuz1kCrz!
a2

k112a1
k11

k11
,

a525~Cuz2kCrz!
a2

2k112a1
2k11

2k11
,

a535~Cuz8 1k8Crz8 !
a3

k8112a2
k811

k811
,

~55!

a545~Cuz8 2k8Crz8 !
a3

2k8112a2
2k811

2k811
,

a555@~Cuz1Crz!A11Czz#
a2

22a1
2

2

1@~Cuz8 1Crz8 !A181Czz8 #
a3

22a2
2

2
,

b552~Cuz12Crz!A2

a2
32a1

3

3

2~Cuz13Crz!A3

a2
42a1

4

4
1

Fz

2p
.

The set of linear Eqs.~46!, ~48!, ~50!, ~52!, and~54! may
be written in matrix form

3
a11 a12 0 0 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

0 0 a43 a44 a45

a51 a52 a53 a54 a55

4 3
D1

D2

D18

D28

ez

4 53
b1

b2

b3

b4

b5

4 ~56!
i

Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
which is solved in the standard way as

3
D1

D2

D18

D28

ez

4 53
a11 a12 0 0 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

0 0 a43 a44 a45

a51 a52 a53 a54 a55

4
21

3
b1

b2

b3

b4

b5

4 . ~57!

3. Coefficients for a general multisection coil

For a multisection coil, in which any section may be
reinforcement region, the boundary conditions are applied
each section.

s r
~1!50 at r 5a1 ~58!

s r
~ j !5s r

~ j 11! at r 5aj 11; j 51, n21 ~59!

ur
~ j !5ur

~ j 11! at r 5aj 11 ; j 51, n21 ~60!

s r
~n!50 at r 5an11 ~61!

The axial force equilibrium applies to all coil sections

E
a1

an11
2prszdr5Fz. ~62!

The derivation of the equations for the coefficients p
ceeds as in the previous cases. The coefficient matrix for
system of 2n11 equations and unknowns is given by
3
a11 a12 0 0 0 0 0 ¯ a12n11

a21 a22 a23 a24 0 0 0 ¯ a22n11

a31 a32 a33 a34 0 0 0 ¯ a32n11

0 0 a43 a44 a45 a46 0 ¯ a42n11

0 0 a53 a54 a55 a56 0 ¯ a52n11

] ] ]

0 0 ¯ 0 a2n2n21 a2n2n a2n2n11

a2n111 a2n112 ¯ a2n112n a2n112n11

4 ~63!
ce-
rain
with the solution, as previously, by matrix inversion.

C. Thermal stress, general solution

The case of thermal stress proceeds in a manner sim
to the mechanical stress. The distributed mechanical loadXr
lar

is zero in the force balance equation, Eq.~14!. The strain
displacement, Eq.~6! and stress–strain relations, Eq.~1! are
combined, and the resulting stress as a function of displa
ment, thermal contraction, and the constant total axial st
is introduced into the stress balance equation to yield
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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r
d2u

dr2 1
du

dr
2k2

u

r
52

Crz2Cuz

Crr
ez

tot1
Cur2Cuu

Crr
auDT

1
Crr 2Cur

Crr
a rDT

1
Crz2Cuz

Crr
azDT, ~64!

where the anisotropy factork is given by
g
ss

ffi

d
a

Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
k25
Cuu

Crr
. ~65!

The general solution of Eq.~64! may be written in the
form

u5D1r k1D2r 2k1A1ez
totr 1A2r , ~66!

where the known constants are given as
y

A152
1

12k2

Crz2Cuz

Crr
,

~67!

A25
1

12k2

~Cur2Cuu!auDT1~Crr 2Cur !a rDT1~Crz2Cuz!azDT

Crr
.

The solution is singular whenk equals one. In this case the constantsA in Eq. ~67! are replaced in the general solution b
the functionsA in Eq. ~68!:

A1~r !52
1

2

Crz2Cuz

Crr
ln~r !

~68!

A2~r !5
1

2

~Cur2Cuu!auDT1~Crr 2Cur !a rDT1~Crz2Cuz!azDT

Crr
ln~r !.
nal
to

ity
are
The solution for the displacement is introduced throu
Eqs.~1! and~6! to yield the three-dimensional state of stre
and strain given in Eqs.~69!–~73!, together with Eq.~13!:

eu5D1r k211D2r 2k211A1ez
tot1A22auDT ~69!

e r5D1krk212D2kr2k211A1ez
tot1A22a rDT ~70!

su5~Cuu1kCur !D1r k211~Cuu2kCur !D2r 2k21

1~Cuu1Cur !A1ez
tot1~Cuu1Cur !A21Cuzez

tot

2CuuauDT2Cura rDT2CuzazDT ~71!

s r5~Cur1kCrr !D1r k211~Cur2kCrr !D2r 2k21

1~Cur1Crr !A1ez
tot1~Cur1Crr !A21Crzez

tot

2CurauDT2Crr a rDT2CrzazDT ~72!

sz5~Cuz1kCrz!D1r k211~Cuz2kCrz!D2r 2k21

1~Cuz1Crz!A1ez
tot1~Cuz1Crz!A21Czzez

tot

2CuzauDT2Crza rDT2CzzazDT. ~73!

These equations, together with the value of the coe
cientsD1 andD2 , plus the value of the constant strainez

tot ,
determine the stress and strain in the coil section.

D. Equations for coefficients

The solution of equations for the coefficients procee
essentially in the same manner as the case of magnetic lo
h

-

s
ds,

but here with no applied axial magnetic load, the net inter
axial stress in the central region of a coil must balance
zero.

1. Coefficients for single section coil

For a single section coil with constant current dens
and uniform material properties, the boundary conditions

s r50 at r 5a1 ~74!

s r50 at r 5a2 ~75!

E
a1

a2
2prszdr50. ~76!

Evaluating Eq.~72! at the inner radius results in

a11D11a12D21a13ez
tot5b1 , ~77!

where the constants are given by

a115~Cur1kCrr !a1
k21,

a125~Cur2kCrr !a1
2k21,

~78!
a135~Cur1Crr !A11Crz ,

b152~Cur1Crr !A21CurauDT1Crr a rDT1CrzazDT.

Evaluating Eq.~72! at the outer radius results in

a21D11a22D21a23ez
tot5b2 , ~79!

where the constants are given by

a215~Cur1kCrr !a2
k21,
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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a225~Cur2kCrr !a2
2k21,

~80!
a235a13,

b25b1 .

Integrating Eq.~73! in Eq. ~76! results in

a31D11a32D21a33ez
tot5b3 , ~81!

where the constants are given by

a315~Cuz1kCrz!
a2

k112a1
k11

k11
,

a325~Cuz2kCrz!
a2

2k112a1
2k11

2k11
,

~82!

a335@~Cuz1Crz!A11Czz#
a2

22a1
2

2
,

b352@~Cuz1Crz!A22CuzauDT2Crza rDT

2CzzazDT#
a2

22a1
2

2
.

The set of linear Eqs.~77!, ~79!, and~81! may be written
in matrix form

F a11 a12 a13

a21 a22 a23

a31 a32 a33

G F D1

D2

ez
tot
G5F b1

b2

b3

G ~83!

which is solved in the standard way as

F D1

D2

ez
tot
G5F a11 a12 a13

a21 a22 a23

a31 a32 a33

G21F b1

b2

b3

G . ~84!

2. Coefficients for single section coil with external
reinforcement

For a single section coil with reinforcement, the boun
ary conditions are applied to the coil section and the re
forcement.

s r
~1!50 at r 5a1 ~85!

s r
~1!5s r

~2! at r 5a2 ~86!

ur
~1!5ur

~2! at r 5a2 ~87!

s r
~2!50 at r 5a3 ~88!

The axial force equilibrium applies to the coil and rei
forcement.

E
a1

a3
2prszdr50 ~89!

Evaluating Eq.~72! at the inner radius results in

a11D11a12D21a15ez
tot5b1 , ~90!

where the constants are given by

a115~Cur1kCrr !a1
k21,
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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a125~Cur2kCrr !a1
2k21,

~91!
a155~Cur1Crr !A11Crz ,

b152~Cur1Crr !A21CurauDT1Crr a rDT1CrzazDT.

Evaluating Eq.~72! at the interface between the coil an
the reinforcement results in

a21D11a22D21a23D181a24D281a25ez
tot5b2 , ~92!

where the constants are given by

a215~Cur1kCrr !a2
k21,

a225~Cur2kCrr !a2
2k21,

a2352~Cur8 1k8Crr8 !a2
k821,

~93!

a2452~Cur8 2k8Crr8 !a2
2k821,

a255@~Cur1Crr !A11Crz#2@~Cur8 1Crr8 !A181Crz8 #,

b25@~Cur8 1Crr8 !A282Cur8 au8DT2Crr8 a r8DT2Crz8 az8DT#

2@~Cur1Crr !A22CurauDT2Crr a rDT2CrzazDT#,

and where the unprimed quantities refer to the coil and
primed quantities refer to the reinforcement.

Evaluating Eq.~66! for the displacement at the interfac
results in

a31D11a32D21a33D181a34D281a35ez
tot5b3 , ~94!

where the constants are given by

a315a2
k a325a2

2k ,

a3352a2
k8 a3452a2

2k8 , ~95!

a355A1a22A18a2 b35A28a22A2a2 .

Evaluating Eq.~72! at the outside radius of the reinforce
ment results in

a43D181a44D281a45ez
tot5b4 , ~96!

where the constants are given by

a435~Cur8 1k8Crr8 !a3
k821,

a445~Cur8 2k8Crr8 !a3
2k821,

~97!
a455~Cur8 1Crr8 !A181Crz8 ,

b452~Cur8 1Crr8 !A281Cur8 au8DT1Crr8 a r8DT1Crz8 az8DT.

Integrating Eq.~73! through coil and reinforcement in
Eq. ~89! results in

a51D11a52D21a53D181a54D281a55ez
tot5b5 , ~98!
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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where the constants are given by

a515~Cuz1kCrz!
a2

k112a1
k11

k11
,

a525~Cuz2kCrz!
a2

2k112a1
2k11

2k11
,

a535~Cuz8 1k8Crz8 !
a3

k8112a2
k811

k811
,

~99!

a545~Cuz8 2k8Crz8 !
a3

2k8112a2
2k811

2k811
,

a555@~Cuz1Crz!A11Czz#
a2

22a1
2

2

1@~Cuz8 1Crz8 !A181Czz8 #
a3

22a2
2

2
,

b552@~Cuz1Crz!A22CuzauDT2Crza rDT

2CzzazDT#
a2

22a1
2

2
2@~Cuz8 1Crz8 !A282Cuz8 au8DT

2Crz8 a r8DT2Czz8 az8DT#
a3

22a2
2

2
.

The set of linear Eqs.~90!, ~92!, ~94!, ~96!, and~98! may
be written in matrix form

F a11 a12 0 0 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

0 0 a43 a44 a45

a51 a52 a53 a54 a55

G F D1

D2

D18

D28

ez
tot

G5F b1

b2

b3

b4

b5

G ~100!

which is solved in the standard way as

F D1

D2

D18

D28

ez
tot

G5F a11 a12 0 0 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

0 0 a43 a44 a45

a51 a52 a53 a54 a55

G 21

F b1

b2

b3

b4

b5

G ~101!

3. Coefficients for a general multisection coil

For a multisection coil, in which any section may be
reinforcement region, the boundary conditions are applie
each section.

s r
~1!50 at r 5a1 ~102!

TABLE I. Magnet parameters of a simple solenoid with external reinfor
ment.

a1

~mm!
a2

~mm!
a3

~mm!
h/2

~mm!
J

~A/mm2!

250 300 310 500 150
Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subje
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s r
~ j !5s r

~ j 11! at r 5aj 11 ; j 51, n21 ~103!

ur
~ j !5ur

~ j 11! at r 5aj 11 ; j 51, n21 ~104!

s r
~n!50 at r 5an11 ~105!

The axial force equilibrium applies to all coil sections

E
a1

an11
2prszdr50 ~106!

The derivation of the equations for the coefficients p
ceeds as in the previous cases. The coefficient matrix has
form given by Eq.~63!.

VII. EXAMPLE CALCULATIONS

The results of a GPS calculation are compared with
finite element calculation for a superconducting magnet c
sisting of a single solenoid coil with external reinforceme
The parameters of the coil are given in Table I, wherea1 and
a2 are the inside and outside radius of the windings, resp
tively, a2 and a3 are the inside and outside radius of th
reinforcement, andh is the length. The current densityJ is
the average value over the winding pack, including cond
tor and insulation. The material properties given in Table
are similarly average properties over the windings and o
the reinforcement region. The properties are characteristi
an epoxy impregnated, wire wound coil construction.

The largest loads on a superconducting magnet are f
the magnetic force. The axial, radial, and tangential com
nents of stress are given in Fig. 1. The tangential stre
which reacts the radial outward component of the force
the dominant stress component. In this example, the con
tor region of the windings is supported by the external re
forcement, which displays an increased stress in propor
to Eu . The axial stress is also significant in magnitude. T
value of the axial stress in the reinforcement is an indicat
of the proportion of the axial load that is supported by t
reinforcement. The corresponding strain components for
magnetic force load are given in Fig. 2.

The thermal stress, which develops as a result
cooldown from room temperature to liquid helium operati
temperature, is shown in Fig. 3. Both the axial and tangen

-

TABLE II. Material properties assumed for finite element and generali
plane strain analysis.

Property Coil Reinforcement

Eu(GPa) 95 190
Er(GPa) 50 125
Ez(GPa) 60 140
Grz(GPa) 12 35
nur 0.330 0.275
n rz 0.200 0.190
nuz 0.330 0.275
n ru 0.174 0.181
nzr 0.240 0.213
nzu 0.208 0.203
auDT 20.003 15 20.003 00
a rDT 20.004 50 20.003 30
azDT 20.003 70 20.003 20
ct to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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stress distributions represent a zero net force balance in
coil. The thermal strain components are given in Fig. 4. T
tangential strain reflects the nonisotropic nature of the th
mal contraction, with the inside and the outside of the c
being drawn toward the center.

The correspondence between the finite element and
calculations may be assessed from the figures. The m
simplifying assumption of GPS is the assumption of a c
stant axial strain. The validity of the assumption for th
particular example is shown with greater resolution in Figs
and 6, for the magnetic force and thermal contraction,
spectively. In both cases, it is the total axial strain that
shown, which for the case of thermal contraction is the s
of the mechanical strain resulting from the thermal contr
tion loads and the thermal contraction strain. For the cas
magnetic force, the degree of bending in a coil and the
viation from a constant value of the axial strain, will depe
in general on all the coils in a set of coils which produce
magnetic field at the coil in question.

A constant value of axial strain is equivalent to a rig
cylinder deformation. Nonconstant values as shown in
finite element results indicate that some degree of bend
does occur. Although small, potential sources of bend
were examined to gain further insight. In order to identify t
source of the observed bending, the same example coil
used with the radial and axial force distributions appli
separately. The results are given in Fig. 7. The radial fo
being produced by the axial field, is relatively constant o
the central region of a long solenoid, but decreases tow

FIG. 2. Axial, radial, and tangential strain components due to magn
force loading.

FIG. 1. Axial, radial, and tangential stress components due to magn
force loading.
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FIG. 3. Axial, radial, and tangential stress components due to differen
thermal contraction during cooldown.

FIG. 4. Axial, radial, and tangential strain components due to differen
thermal contraction during cooldown.

FIG. 5. Total axial strain comparison for magnetic force loading.

FIG. 6. Total axial strain comparison for thermal contraction loading
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the end. The result is a small tendency of a coil to form
barrel shape. The axial force is distributed only over
windings, while the reinforcement forms a stiff outer she
The result is an additional degree of bending.

VIII. CONCLUSIONS

The method of GPS, with the assumption of const
axial strain and the integral constraint on the axial stre
provides an accurate analytic method for the calculation

FIG. 7. Total axial strain computed by finite elements for radial magn
loading and axial magnetic loading separately.
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three-dimensional stress in long solenoids. Knowledge of
axial stress and the redistribution of the axial stress into
ternal reinforcement is of particular interest in coils of i
creasing size and field strength. The analysis has serve
focus on the extent to which the axial strain in solenoid co
is a constant, and to examine the relationship between
condition of zero shear stress and the constant axial st
condition.
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