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Abstract

This paper focuses on the application of statistical continuum mechanics to the prediction of
mechanical response of polycrystalline materials and microstructure evolution under large plastic
deformations. A statistical continuum mechanics formulation is developed by applying a Green’s
function solution to the equations of stress equilibrium in an in6nite domain. The distribution and
morphology of grains (crystals) in polycrystalline materials is represented by a set of correlation
functions that are described by the corresponding probability functions. The elastic deformation
is neglected and a viscoplastic power law is employed for crystallographic slip in single crystals.
In this formulation, two- and three-point probability functions are used. A secant modulus-based
formulation is used. The statistical analysis is applied to simulate homogeneous deformation
processes under uniaxial tension, uniaxial compression and plane strain compression of an FCC
polycrystal. The results are compared to the well-known Taylor upper bound model and discussed
in comparison to experimental observations. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The formulation of the macroscopic mechanical response of polycrystalline medium
has been the subject of many studies and approaches (Ahzi, 1987; Budiansky, 1965;
Hashin and Shtrikman, 1962; Hutchinson, 1976; Kr?oner, 1972; Morris, 1970; Reuss,
1929; Voigt, 1889). Applying statistical continuum theory in predicting elastic
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properties of polycrystals was initiated independently by Beran and Molyneux, Volkov
and Klinskikh (1965) and Klinskikh (1965), Lomakin (1970), and Kr?oner (1967). In
this theory, the elastic moduli of polycrystals are estimated from the correlation func-
tions (Beran and Molyneux, 1968). The correlation functions are the means through
which the statistical concepts are incorporated into the model. In contrast to the self-
consistent theory (Hill, 1965; Molinari et al., 1987), the statistical formulation is ex-
plicit, which means that the theory provides the complete macroscopic constitutive law,
linking the applied stress and the macroscopic strain-rate tensors in closed form, if the
correlation functions are provided.
A comprehensive work on the statistical theory has been developed primarily by

Beran (Beran and Molyneux, 1968; Beran and Molyneux, 1966; Lomakin, 1970; Kr?oner,
1972). Their contribution produced a basis to apply the theory to heterogeneous materi-
als. Kr?oner (1967, 1987) improved the statistical theory with attention to mathematical
aspects of the theory of elasticity. The application to anisotropic materials was studied
by Zeller and Dederichs (1973). McCoy (1981) focused on the relationship between
the substructure geometry and the correlation functions.
Due to the great practical interest in the large deformation polycrystalline theory,

a lot of eGort has been devoted to develop appropriate approaches. In general, at
large deformations, the elastic strain is neglected. As early as 1938, Taylor proposed
a uniform strain model that assumes the plastic strain in each grain is identical to
the macroscopic plastic strain (Taylor, 1938). Models based upon Taylor’s assump-
tion (Asaro and Needleman, 1985; Bishop and Hill, 1951; Hutchinson, 1976; Kocks
and Canova, 1981) have often demonstrated 6rst-order agreement with the measure-
ment of mechanical anisotropy of polycrystalline materials. However, the hypothesis
of plastic strain uniformity is somewhat crude; it has been shown to fail when plastic
strain heterogeneities are evident. One the so-called “relaxed constraints” theory (Hon-
neG and Mecking, 1978; Houtte, 1981; Kocks and Canova, 1981; LeGers, 1968) takes
into account the strain heterogeneities produced by anisotropic grain shapes and the
predicted results have a better agreement with experiments. This is true particularly
in some speci6c cases, such as large strain rolling and torsion of fcc metals. Asaro
and Needleman (1985) proposed an extension of Taylor theory for large deformations
including elastic deformations. It should be noticed that all theories based on Tay-
lor’s strain uniformity only ful6ll compatibility but not equilibrium conditions at grain
boundaries.
In 1987, Molinari et al. (1987) proposed a self-consistent approach for the large de-

formation polycrystal viscoplasticity. Their approach was based on a scheme developed
by Zeller and Dederichs (1973) in heterogeneous elasticity. In this approach, equilib-
rium and compressibility equations are used to arrive at an integral equation for the
local velocity gradient. This integral equation can be solved via diGerent approximate
schemes. In the self-consistent model of Molinari et al. (1987), a single crystal (grain)
is considered as an inclusion embedded in a homogeneous equivalent medium. The in-
teraction law derived from the integral equation results in a nonlinear relation between
stress and strain rate that is solved by a straightforward Newton method. We note
that Nemat-Nasser and Obata (1986) also proposed a self-consistent model for large
elastic–viscoplastic polycrystalline deformation by using Hill’s self-consistent scheme
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(Hill, 1965). However, this model was shown to predict similar results to those of the
Taylor upper bound at large deformations (Harren, 1991).
The statistical continuum theory also plays an equally important role with self-

consistent model in the plasticity of large deformation as it did in elasticity. Adams
et al. (1989) presented a statistical formulation of viscoplastic behavior in heteroge-
neous polycrystals by taking the approach which parallels the constructs in the statisti-
cal continuum theory of linear-elastic polycrystals (Kr?oner, 1967, 1972, 1987; McCoy,
1981). A secant modulus formulation of the single-crystal constitutive law was used.
The interaction law from equilibrium conditions and the incompressibility condition
was obtained by using Green’s function method. The statistical formulation was formed
from the interaction law by incorporating the 2-point probability density function of
lattice orientations, that can also be called the crystallite orientation correlation func-
tion (OCF) (Adams et al., 1988). The statistical theory of Adams et al. (1989) was
6rst applied to the prediction of initial texture evolution in FCC polycrystals under
uniaxial creep (Adams and Field, 1991). Evolution of the correlation functions was
not considered in this initial work.
The traditional analysis of polycrystalline orientation uses the crystallite orientation

distribution function (ODF), which is an average representation of polycrystalline lattice
orientation, to de6ne the texture. Existing polycrystalline plasticity models account for
the initial ODF, and predict its evolution, but completely neglect the spatial correlation
between crystals. The statistical modeling proposed in this paper, based on the work
of Adams et al. (1989), accounts for not only lattice orientations but also their spatial
correlations. For the formulation of the correlation between crystals, a 2-point proba-
bility density function, named the orientation coherence function (OCF), is advocated
as a logical 6rst step towards more sophisticated microstructural measures (Adams and
Field, 1991; Adams et al., 1987, 1988; Morris et al., 1988). The OCF describes the
correlation of lattice orientations between points in the polycrystalline material sepa-
rated by a speci6ed vector. The OCF requires nine parameters — three describing the
lattice orientation at each point, and three de6ning their spatial relationship with respect
to one another, whereas the ODF can be conveniently de6ned on a three-dimensional
manifold parameterized by Euler angles for each crystal. Measurements of the OCF
are much more demanding than those required for the ODF. However, with simulta-
neous advances in micro-diGraction technology and computing hardware and software,
OCF measurement is now possible for many crystalline materials (Adams et al., 1993;
Wright et al., 1993).
It could be stated that the main problem in the implementation of the statistical

model for large deformation plasticity of polycrystalline materials is the incorporation
of the OCF in the analyses. This problem consists of two parts: OCF measurement,
and closed form representation of the OCF for certain types of material con6gurations.
During the 1990s, a new technique, called orientation imaging microscopy (OIM), was
developed for examining the spatial arrangement of lattice orientations in polycrystalline
microstructures. The orientation of the crystal lattice can be determined from electron
backscatter diGraction patterns (EBSPs) in the SEM. OIM was 6rst described by Adams
et al. (1993) and the initial applications of OIM to polycrystalline aluminum was
described by Wright et al. (1993). OIM data can be directly interrogated to obtain
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estimates of the OCF. These estimates procure naturally in tabular form, expressing
the probabilities as statistical fractions dependent upon nine degrees of freedom. If
incorporated directly into the numerical calculation, the relevant procedures involve an
enormous computational time. Closed-form representations for the OCF are preferred
in the numerical procedure. The parameters contained in the formulation can be derived
from the experimental data by an appropriate numerical 6tting method.
Corson (1976a, b) proposed a form for the representation of the two- and three-point

probability functions for a two-isotropic-phase medium. Irrespective of the simplicity
of the case dealt with by corson, the application of this form allows a better under-
standing of the problem and the derivation of more complicated forms. This form of
the probability function had been applied to estimate the inelastic eGective proper-
ties of a two-phase medium (Garmestani et al., 1998). In a later work, the evolution
of two-point probability functions has been investigated for composite materials (Lin
et al., 2000). The eGective properties of an elastic two-phase medium was investigated
separately by Garmestani and Lin (2000). For a polycrystalline microstructure, the
proper functional form of the probability function cannot be derived as easily since
nine variables have to be included for a two-point OCF. The work presented here to
describe the two-point OCF, for a heterogeneous polycrystalline medium, is essentially
an extension of Corson’s work. In the statistical continuum model for polycrystals, the
calculation of texture evolution involves three-point probability functions. However,
in this paper an approximation for the decomposition of the three-point probability
functions using the two-point probability functions is introduced.
This paper focuses on the application of statistical continuum mechanics to large

deformation plasticity of polycrystalline materials. Elasticity is neglected and plas-
ticity is assumed to occur by crystallographic slip. A viscoplastic power law is as-
sumed for crystallographic slip and used to derive the three-dimensional constitu-
tive relation for single-crystal viscoplasticity. In Section 2, we brieNy review the
single-crystal viscoplasticity and use the secant modulus formulation for the description
of the single-crystal behavior. In Section 3, we show how the local velocity gradient
is linked to the macroscopic one (interaction law) using the integral method which
follows the scheme developed by Molinari et al. (1987). Section 4 shows the descrip-
tion of the proposed 6rst-order statistical concept, which leads to the derivation of the
statistical interaction law, and the description of the two-point correlation functions.
In Section 4, the evolution of texture and the two-point correlation functions are de-
scribed via simpli6ed three-point probability functions that are approximated from the
two-point correlation functions. In the last section, simulated results for an FCC metal
under homogeneous deformation are shown for uniaxial and plane strain loading con-
ditions. These results are discussed in comparison to experimentally observed ones and
are directly compared to the results from the Taylor upper-bound model.

2. Interaction law

In the following, the interaction law is derived for a viscoplastic polycrystal using
the integral equation as formulated by Molinari et al. (1987). Note that elasticity is
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neglected and the secant formulation is used. We denote by T the local Cauchy stress,
T=S−p I; with p representing the pressure and I is the second-order identity tensor.
Because of the full symmetry of M; the secant modulus N is also fully symmetric. If
L represents the velocity gradient, with D the symmetric part of L, Eq. (7) can be
written as S=NL. Therefore, the equilibrium equation throughout the polycrystal can
be expressed as

Tij; j = (NijklLkl); j − p;i = 0: (1)

Locally N is determined by L and a set of state variables, h. Here, h includes the three
Euler angles, which de6ne the orientation of the crystal lattice with respect to a chosen
macroscopic reference frame. Decompose N as the sum of a uniform part N0 and a
space-dependent part Ñ to obtain N=N0 + Ñ. The uniform fourth-order tensor N0 is
assumed to represent the instantaneous secant moduli of the homogeneous equivalent
medium (HEM). Molinari et al. (1987) proposed a Green’s function solution for the
set of PDEs represented by Eq. (1) and the compatibility conditions, Lii = 0:

Lik(r) = QLik +
∫
r′ ∈ V

Gij;k(r− r′)[Ñjlrs(L(r′); h(r′))Lrs(r′)]; l dr
′

= QLik +
∫
r′ ∈ V

Gij;kl(r− r′)Ñjlrs(L(r′); h(r′))Lrs(r′) dr′; (2)

where Gij;kl(r− r′) has a singular value at r= r′. A proper solution to this problem is
to construct solutions for a 6nite small volume Vc surrounding point r, then calculate
the average value of the velocity gradient to replace the value at r (Kr?oner, 1987).
Hence, a very small volume (compared to the volume of the whole specimen) is used
in order to obtain a solution (Garmestani et al., 1998; Lin et al., 2000). Let L0(r) be
this averaged value

L0ik(r) = QLik +
1
Vc

∫
r ∈ Vc

∫
r′ ∈ V

Gij;kl(r− r′)Ñjlrs(L0(r′); h(r′))L0rs(r
′) dr′ dr: (3)

Using the abbreviated form of Eq. (3):

L0(r) = QL+G(r− r′) ∗ Ñ(r′)L0(r′): (4)

The symmetric part and the antisymmetrical part of Eq. (4) de6ne the local strain-rate
tensor D0(r) and the local total spin tensor W0(r); respectively. The total spin tensor
consists of a lattice spin and a plastic spin. The rate of lattice rotation W0∗(r) is the
lattice spin and the plastic part W0p(r) does not change the orientation of crystal lattice,
thus

W0∗(r) =W0(r)−W0p(r); (5)

where W 0p
ij =

1
2

∑
� (s

�
i n
�
j − s�j n�i )�̇�. The unit vectors s� and n� represent, respectively,

the slip direction and the slip-plane normal for the �th slip system. The slip rate for
the �th slip system, �̇�; can be calculated using (Hutchinson, 1976)

��=��c = (�̇
�=�̇0)

m; (6)
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where m is the rate sensitivity parameter, and ��c and �̇0 represent the critical shear stress
and a reference shear strain rate, respectively. The strain rate in the single crystal, D;
is equal to the plastic strain rate, which is given by the sum over the contributions
from all slip systems. It is related to the deviatoric Cauchy stress tensor S by

Dij =MijklSkl; (7)

where

Mijkl =
∑
�

(�̇0=�
�
c)(�

�
rsSrs=�

�
c)
n−1��ij�

�
kl (8)

and

��ij =
1
2
(s�i n

�
j + s

�
j n
�
i ) (9)

and n=1=m. The fourth-order compliance tensorM is positive de6nite and the deviatoric
stress and deviatoric strain-rate relation (5) is a one-to-one relation. Therefore, the
inverse relationship to this equation exists where N=M−1.

3. Statistical formulation and correlation functions

Assume that velocity gradient 6eld does not deviate too far from the uniform 6eld
of the Taylor-type polycrystal. Using Taylor series expansion about QL, Eq. (4) can be
written as

L0 = QL+ G ∗
(
�̃( QL) + �̃′( QL)L̃

0
+
1
2!
�̃′′( QL)(L̃

0
)2 + · · ·

)
; (10)

where �̃ is the polarized deviatoric stress de6ned by

�̃jl(r′) = Ñjlrs(L(r′); h(r′))Lrs(r′): (11)

Considering only the 6rst-order correction to the homogeneous Taylor’s solution, then
Eq. (4) becomes

L0(r) = QL+G(r− r′) ∗ Ñ(QL; h(r′))QL: (12)

In the following the statistical concept is introduced with proper correlation functions to
relate the local to global properties. Consider the ensemble average of the local velocity
gradients for many particles belonging to the same state h. Each grain is surrounded by
a structure that is diGerent from all other grains even if they are at the same state. This
results in a distinctive velocity gradient for each grain. Here we neglect the diGerence
between the local velocity gradient belonging to the grains with the same state and
assume that all these grains have one local velocity gradient value that is calculated
from the ensemble average. Symbol 〈 〉h denotes the ensemble average over grains at
state h. The averages of interest here are obtained from expressions like

〈( )i〉= 1
N

N∑
i=1

( )i : (13)
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Applying this to Eq. (12), the ensemble average of the local velocity gradients belong-
ing to the same state, h; can be calculated:

〈L0(r)〉h = QL+G(r− r′) ∗ 〈Ñ(QL; h(r′))〉h QL: (14)

The symmetric part and the antisymmetric part of Eq. (14) correspond to the ensemble
average of the local strain rate and local spin tensor, respectively

〈D0(r)〉h = QD+ �(r− r′) ∗ 〈Ñ(QL; h(r′))〉h QL; (15)

〈W0(r)〉h = QW+ �(r− r′) ∗ 〈Ñ(QL; h(r′))〉hL̃: (16)

Eq. (15) represents the 6rst-order statistical localization law. The correlation function〈
Ñ(QL; h(r′))

〉
h can be described in terms of the conditional two-point probability density

function of state, h,

〈
Ñ(QL; h(r′))

〉
h =

∫
f(r′ ∈ h(r′) | r∈ h)Ñ(QL; h(r′)) dh(r′); (17)

where f(r′∈ h(r′) | r∈ h) is de6ned as the probability of occurrence of r′ at state h(r)′
given that r belongs to state h.
The polycrystalline material contains a number of grains, each of which can be

considered a diGerent phase distinguished by its orientation. Each grain with a diGerent
orientation can be considered as belonging to a diGerent state, hi. The corresponding
two-point probability functions can then be de6ned according to these states:

Pij =

{
V 2i + Vi(1− Vi)exp(−cijrnij); i = j;

ViVj − ViVj exp(−cijrnij); i �= j;
(18)

where, Vi and Vj represent the volumes fractions of grains belonging to state hi and hj,
respectively, cij and nij are the constants describing the information of grains distribu-
tion and morphology for the individual states. Initially, for a microstructure, cij and nij
are empirical constants determined by a least-squares curve 6t between measurement
data and the assumed form of the function Pij. The conditional two-point correlation
function of lattice orientations in Eq. (17) is related to Pij by the following:

f(r′ ∈ hj | r∈ hi) = Pij=Vi: (19)

4. Evolution of the correlation functions

During deformation, the texture evolves and results in a change in the macroscopic
properties (mechanical, etc.) of the polycrystalline material. In the statistical continuum
model, the correlation function, which is expressed by the corresponding probability
function, is used to describe the microstructure of the polycrystal. The evolution of
probability functions with deformation reNects the development of texture. In this sec-
tion, the factors that inNuence the evolution of probability functions are evaluated, and a
numerical scheme corresponding to their calculation is presented.
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Fig. 1. De6nition of parameters associated with the evolution equations.

4.1. The e:ect of strain-rate

The local velocity gradient consists of the strain-rate tensor and the spin tensor.
Under an applied strain rate Dij the structure changes and the magnitude of any vector
located inside the polycrystal would change accordingly. As a result, parameters cij
and nij in Eq. (18) are expected to evolve because of this factor.
Referring to Fig. 1, a representative vector e is shown that originates from state h

and terminates at state h′. The rate of change of the magnitude of e can be written as

〈ė〉h;h′ =
∫
〈L(r′′)〉h;h′ de; (20)

where 〈L(r′′)〉h;h′ , is the local strain rate represented by vector r′′ when vector r belongs
to state h and vector r′ belongs to state h′. Consequently, a three-point probability
function is needed to obtain the value for 〈L(r′′)〉h;h′ , from 〈L(r′′)〉h′′ , which is the
expected local velocity gradient when the point represented by r′′ belongs to state h′′:

〈L(r′′)〉h;h′ =
∫
f3(h′′; r′′ | h′; r′; h; r)〈L(r′′)〉h′′ dh′′: (21)

Here f3(h′′; r′′ | h′; r′; h; r) is a three-point probability function and corresponds to the
probability of occurrence of state h′′ at r′′ given that state h and h′ occur at r and
r′, respectively. This three-point probability function is derived from the two-point
probability functions as shown in the following.
Following the earlier work (Adams et al., 1989; Adams and Field, 1991), approxi-

mation for the decomposition of the three-point probability function using the two-point
probability functions is introduced here as

f3(h′′; r′′ | h′; r′; h; r) ∼= x1
x1 + x2

f2(h′′; r′′ | h′; r′) + x2
x1 + x2

f2(h′′; r′′ | h; r); (22)

where x1 and x2 are the magnitudes of the vectors represented by |r′′− r|, and |r′′− r′|.
Once the rate of change of the magnitude of e is obtained by Eq. (45), it can be
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integrated with time t as shown by Eq. (48), to provide the change in the magnitude
of vector e from the initial point.

〈We〉h;h′ =
∫ t

0
〈ė〉h;h′ dt: (23)

To determine the constants cij and nij in Eq. (18) at each step of the numerical
simulation process, Pij’s are assumed to be known on the left-hand side of Eq. (18).
The major inputs will be r (the new magnitude of vector e) on the right-hand side of
Eq. (18). As a result, a simultaneous set of equations in terms of diGerent r inputs are
obtained. The new unknown parameters cij and nij can now be solved from this set of
equations.

4.2. The e:ect of spin-tensor

The grains are divided into groups (states) according to three Euler angles of crystal
lattice orientation: ’1; $ and ’2. Other aspects of the state, such as the critical resolved
stress, ��c , are held constant in the present work. During deformation, the crystal lattice
rotates, and Euler angels change accordingly. The elastic part W0(r) of the spin tensor
W0(r) reNects the rate of crystal lattice rotation. Each group of grains corresponding to
each state provides a particular total spin tensor described by Eq. (16), and therefore
has diGerent rate of crystal lattice rotation. The rate of change of crystallographic axes,
for instance the a-axis, is given by (Lee et al., 1995)

a=W0∗ · a: (24)

The solution to this equation can be given in incremental form as

a(t +Wt) = exp(W0∗Wt) · a(t); (25)

where t designates time and Wt is the time increment. By using the Cayley–Hamilton
theorem, the expansion of exp(Ŵ), with Ŵ=W0∗Wt, can be expressed in the following
form:

exp(Ŵ) = I+
sin!
!

Ŵ+
1− cos!
!2

Ŵ
2
; (26)

where I is the second-order identity tensor and !2 =− 1
2 tr(Ŵ

2
).

From Eqs. (25) and (26), the changes of Euler angles of grains can be determined.
When the three Euler angles of the grains of a speci6c state change by a set of values,
a fraction of these grains will move to a diGerent state according to previous grouping
rule. As a result of this process, the volume fractions used in the probability functions
in Eq. (18) for corresponding states will change. Again, the probability functions need
to be modi6ed according to the changes of all volume fractions.

5. Simulation and results

The critical step in solving Eq. (14) is to solve the convolution integration G(r−r′)∗
〈Ñ(QL; h(r′))〉h QL. We choose a cubic element representing a subset of the polycrystalline
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Fig. 2. Two elements geometry of the convolution integral problem G ∗ F.

medium. Then the cube is divided into N × N × N = N 3 (N = 15 in the following
simulations) of smaller cubes of volume W3 shown as Vc & V ′

c in Fig. 2. Generally,
there are three conditions in this numerical process. First, the cubic region must contain
a suZcient number of grains so that it can be taken as a correct statistical representation
of the entire specimen. Second, the number of unit cubes is estimated based on a
representative grain or size scale within the microstructure such that the average size
of such grains are bigger than the size of the unit cube. Third, the cubic region must
be large enough so that the corresponding Green’s function for the maximum |r− r′|
falls within the expected error range. For a 6xed r at Vc, a second cube of volume
V ′
c that contains r

′ is considered. The full integral around r′ ∈V can be taken as the
summation of all cubes V ′

c ∈V except Vc. Then

G(r− r′) ∗ 〈Ñ(QL; h(r′))〉h QL=
∑
v′c ∈ V

{
Fjl
Vc

∫
r∈ Vc

∫
r′ ∈ V ′

c

Gij;kl(r− r′) dr′ dr

}
; (27)

where Fjl = 〈Ñ(QL; h(r′))〉h QL is taken to be constant over V ′
c , which means that one

cube belongs to one state. F is related to the probability functions through

F(hn) = 〈Ñ(QL; h)〉hn QL=
∑
h

f(r′ ∈ h | r∈ hn)Ñ(QL; h)QL; (28)

where f is the conditional two-point probability function of lattice orientations and has
the relationship shown by Eq. (17) with the two-point probability function Pij.
In Eqs. (27) and (28), h and hn are state variables which are determined by ori-

entations of grains. Three Euler angles, ’1, $ and ’2, in the space, ’1 ∈ [’01; ’11],
$∈ [$0; $1] and ’2 ∈ [’02; ’12] are used to represent the orientation of a grain. These
three regions are uniformly divided into n1; n2 and n3 small regions, respectively. Then,
there are a total of n1 × n2 × n3 sets of combinations of three diGerent kinds of small
regions. All grains whose three Euler angles fall within a set of combination are con-
sidered to belong to a state h, therefore h contains n1 × n2 × n3 values.
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In the following sections, the 6nal results are shown. A random microstructure was
produced by the computer program from which the statistical parameters were calcu-
lated. The two modes of deformation considered 6rst are uniaxial tension and com-
pression. Then the case of plane strain compression (approximated by rolling) will
be discussed. For each of these tests, the imposed macroscopic velocity gradient QL is
given. The form of QL is described below for each of the three tests.
tension along the x-axis

QL=



1 0 0

0 −1
2

0

0 0 −1
2


L0;

compression along the x-axis

QL=



−1 0 0

0
1
2
0

0 0
1
2


L0;

rolling in the x–z direction

QL=


−1 0 0

0 0 0
0 0 1


L0:

Here L0 is a constant. The equivalent strain is calculated from

QEeq =
∫ t

0

QDeq(t) dt; (29)

where QDeq is the equivalent macroscopic strain rate and t is time variable.
The equivalent strain rate and the equivalent deviatoric Cauchy stress, Q�eq and QDeq,

are de6ned by

Q�eq =
(
3
2
QSij QSij

)1=2
;

QDeq =
(
2
3
QDij QDij

)1=2
; (30)

where QDij is the macroscopic strain-rate component and QSij is the macroscopic de-
viatoric Cauchy stress component. The parameters in Eq. (6) used in the numerical
calculation are as follows: rate sensitivity coeZcient n=19, the initial normalized ref-
erence stress for each slip system �0 = 1:00, reference �̇0 = 0:001=s. Strain hardening is
neglected. For fcc materials, slip is assumed to occur on 12 slip systems {1 1 1}〈1 1 0〉.
The logarithm of macroscopic strain-rate QDeq vs. the ratio of macroscopic stress Q�eq

and reference stress �0 are shown in Figs. 3 and 4. for the cases of uniaxial tension and
compression. Here, texture evolution has been ignored and the initial microstructure is
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Fig. 3. Macroscopic behavior with diGerent imposed macroscopic strain rate (uniaxial tension).

Fig. 4. Macroscopic behavior with diGerent imposed macroscopic strain rate (uniaxial compression).

maintained during deformation. The prediction based on Taylor’s model is also shown
to be an upper bound compared to that of the statistical continuum results as expected
because there are less constraints between grains in statistical model.
Figs. 5 and 6 describe the comparison of the macroscopic behaviors of the statistical

model and Taylor’s model for uniaxial tension and compression, respectively. The
texture developments with macroscopic strain are shown by Figs. 7 and 8. During
uniaxial tension, 〈1 1 1〉 and 〈1 0 0〉 6ber textures are formed, whereas the 〈1 1 0〉 6ber
texture is formed during uniaxial compression.
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Fig. 5. Macroscopic behavior with macroscopic strain (uniaxial tension).

Fig. 6. Macroscopic behavior with macroscopic strain (uniaxial compression).
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Fig. 7. The development of 〈1 1 1〉 and 〈1 0 0〉 texture with macroscopic strain (uniaxial tension).

Fig. 8. The development of 〈1 1 0〉 texture with macroscopic strain (uniaxial compression).

Fig. 9 shows the macroscopic behavior of the polycrystal under plane strain compres-
sion. Figs. 10 and 11 show the texture development as a function of the macroscopic
strain. The simulation results are displayed in Fig. 10. There are three components
of texture, which are predicted here: {1 1 2}〈1 1 1〉, {1 2 3}〈6 3 4〉, and {1 1 0}〈1 1 2〉,
which are the copper, S component and brass types, respectively.
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Fig. 9. Macroscopic behavior with macroscopic strain.

Fig. 10. The development of {1 1 2}〈1 1 1〉, {1 1 0}〈1 1 2〉 and {1 2 3}〈6 3 4〉 texture with macroscopic strain
(calculation results).
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6. Discussion

The results presented here show a clear evidence that the two-point correlations can
rectify the weaknesses associated with the Taylor-type models in predicting texture
components. In spite of the success which the theory of Taylor’s (1938) has had, the
inadequate predictions of the deformation textures in some cases show the inadequacy
of this theory. The hypothesis of uniform strain implicitly assumes that the grains are
of nearly equiaxed shape. Also the grain to grain contributions are entirely ignored.
The results also show that for the case of tension and rolling there is very little
contribution to the Taylor term. The only texture component, which seems to bene6t
the most from the two-point correlations are the brass component, which clearly does
not evolve with deformation. The main success of the statistical simulation is clearly
the axisymmetric compression. Taylor’s model fails to correctly predict this component
of texture.
The reason behind the failure of Taylor-type models in predicting the 〈1 1 0〉 6ber

texture for axisymmetric compression has been the topic of discussion for some time
now and has been discussed in a recent book by Kocks et al. (1998). Barrett and Lev-
enson (1940) have described the compression texture of aluminum as a very strong
〈1 1 0〉 component with a tendency towards 〈3 1 2〉. The results of Naaman et al. (1987)
concerning the compression texture of copper show the strongest intensity to be near
the 〈1 1 0〉 component and in the band located between 〈1 1 0〉 and 〈1 1 5〉. When the
grains are assumed as plates, HonneG and Mecking (1978) have observed that certain
shear components may be present which are very diGerent from those imposed on the
matrix. HonneG and Mecking have modi6ed the Taylor approach by imposing zero
reaction stresses corresponding to these strain components. They have applied this ap-
proach to rolling and have obtained an improved prediction of textures for this mode
of deformation. Kocks and Canova (1986) have generalized this approach for other
cases, such as torsion and compression. This model is called the “RC” (relaxed con-
straint) or relaxed Taylor model. In support of the RC model, Tiem et al. (1986) have
applied the concept to several cases showing that the RC model also simulates strong
interactions among grains, but that certain strain components may be relaxed due to
grain shape. The RC model however does not predict the experimental texture results
in the case of compression, (Ahzi et al., 1990). This is due to the fact that the Taylor
theory allows very little grain to grain interactions and the grains are not permitted to
be deformed in the deformation plane. Asaro and Needleman (1985) have proposed an
elasto-viscoplastic model for large deformations. This model is of Taylor type, since it
assumes uniformity of the displacement gradient. It does not predict 6ber 〈110〉 texture
either.
A self-consistent, large strain viscoplastic model has been proposed by Molinari

et al. (1987). A remarkable diGerence between this model and Taylor-type models
appears to be for the prediction of compression textures. The 〈110〉 6ber is properly
predicted for compression by the self-consistent scheme while the Taylor’s does not
predict this 6ber. In the case of compression, the local strain rate of a signi6cant
percent of grains deviate from imposed macroscopic strain rate at a certain value. This
eGect, called the Hosford eGect, Hosford (1964) results in a strong 〈110〉 texture and
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is due to the fact that plain strain of neighboring grains is aGected in diGerent ways
which accompany the slips to preserve the continuity of the material. Such an eGect
seems to be recti6ed once the grain to grain interactions are taken into account as
is evident in self-consistent statistical mechanics model based on two-point correlation
functions presented in this paper.
The two-point correlations functions allow the statistical mechanics model to take

into account the grain shapes and the inNuence of individual grain on other neighboring
grains. Detailed experimental and theoretical studies are under way to investigate such
interactions. The major diGerence between the present model and the self-consistent
models seems to be in the quanti6cation of texture as shown in previous results. The
present theory provides the volume fractions of grains with diGerent orientations. Both
ODF and MDF (misorientation distribution functions) can be predicted from these re-
sults. Self-consistent theories provide only general information of distribution of grains
with diGerent orientations, and therefore only pole 6gures can be obtained (Ahzi, 1987).
No quantitative analysis can be performed by the present form of the self-consistent
theories.

7. Conclusions

The statistical continuum theory has been applied to a polycrystalline material to pre-
dict the stress–strain response and texture evolution. Typical deformation textures have
been successfully predicted by the model for FCC polycrystals. This includes the 〈111〉
6ber under tension, the 〈011〉 6ber under uniaxial compression and the well-known cop-
per texture components during rolling (plane strain compression). The results for the
uniaxial–axial compression overcome the well documented failures of the Taylor-like
models to predict the 〈011〉 6ber texture in FCC metals. The present theory emphasizes
the secant-modulus form of single-crystal constitutive law originating with the work of
Hutchinson. The secant modulus formulation is suited to the problem of creep, since
the stresses typically remain a fraction of the yield stress. For moderate and large plas-
tic deformation problems, the secant formulation may lead to stiG response. This is the
case with the self-consistent models where it was shown that the secant formulation
leads a response closer to the Taylor upper-bound predictions (see for instance the
review by Molinari and Ahzi, 1997.) The tangent formulation of the self-consistent
model, proposed by Molinari et al. (1987), gives softer response (lower Now stress).
In the proposed statistical formulations, the predicted texture developments indicates
that this formulation deviates appreciably from the Taylor upper bound. We also be-
lieve that if the tangent modulus formulation is used in the proposed framework, softer
response will be predicted. The comparison of the two formulations (secant vs. tangent
moduli) is underway and will be reported later. In comparison to the self-consistent
theory, the major diGerence is in including the explicit distribution of microstructure
surrounding each grain. The present theory provides a quantitative measure of texture
based on the volume fractions of grains with diGerent orientations from which ODF
can be calculated.
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