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Abstract

Anewmethodology based on a conservation principle in the orientation space is developed to

simulate the texture evolution in a cubic-orthotropic polycrystalline system.A least squares error

methodwas used to improve the accuracy of the simulation results obtained from the texture evo-

lution function. The model is applied to uniaxial tension, compression and rolling for a large

deformation of more than 50% using a single evolution parameter. The validity and application

range of this newmodel are discussed by simulating and predicting texture evolution during dif-

ferent loading conditions.Thenewmethodologyprovides a family of texture evolutionpaths and

streamlines which empowers the materials designer to optimize the desired microstructure.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A major goal for materials design is the selection and optimization of micro-

structures for a specified set of properties and mechanical constraints. To achieve
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this goal, it is necessary to choose the right and most appropriate processing

path. The solution may not be unique and the optimum path may depend on

a number of parameters including cost and reliability. Traditional design meth-

odologies attempt to relate properties to off-the-shelf materials while the range

of microstructures (texture, grain size, deformation history, etc.) for each mate-
rial of choice is usually ignored. Such variation in the microstructure of a spe-

cific material provides a large range of properties that may meet specific

design constraints not readily available in the conventional off-the-shelf materials

design.

To make a direct linkage to microstructures, Adams et al. (2001, 2004) pro-

posed a novel methodology, known as microstructure sensitive design (MSD),

which shifted the current paradigm for designer materials. The new methodology,

as was introduced originally, is concentrated on texture (orientation distribution
function) in polycrystalline materials as a basic variable for design. The other

microstructure attributes such as grain size, grain boundary distribution, morphol-

ogy, second phase particles and precipitates may be included in the framework

using two and higher order statistical distribution functions (Garmestani and

Lin, 2000, 2001; Lin et al., 1998, 2000; Jefferson et al., 2004). The linkage to prop-

erty enclosure may require the correct form of the constitutive relations based on

better understanding of the physics and the underlying deformation mechanisms.

The representation of microstructure in the form of texture may assume the most
basic form and by itself can cover anywhere from a single crystal (as a limiting

form of the distribution function) to bi-crystals and random polycrystals. Appre-

ciable anisotropic properties are usually possessed by single crystals which are

expensive to obtain. Polycrystalline materials are usually less expensive to produce

and more readily available. The incentive to cut the cost by utilizing the state of

anisotropy to maximize the potential application of polycrystalline material

prompts material scientists to seek the means to achieve the optimized texture

by thermomechanical processing. In homogeneous polycrystalline materials texture
determines the anisotropy in mechanical, thermal, magnetic and electrical proper-

ties. MSD in its present form is an approach to balance the requirements of sev-

eral different properties by optimizing texture (Adams et al., 2001, 2004; Kalidindi

et al., 2004). To achieve this goal, a quantitative description of material micro-

structure as a set of texture coefficients, which is associated with properties, is

introduced as a variable in design.

Texture is commonly represented as a Fourier series of generalized spherical har-

monics weighted by appropriate texture coefficients (Bunge, 1965). Using the set of
texture coefficients as a descriptor, microstructures can be represented as points in a

multidimensional space with coordinates as texture coefficients (Adams et al., 2001,

2004). The dimension depends on the number of the texture coefficients used. Each

point in this Fourier space stands for a unique texture, associated with correspond-

ing properties. Texture coefficients are important in determining the properties of

polycrystalline materials. The properties of polycrystalline materials can be repre-

sented as a summation of the product of property coefficients and spherical

harmonics:
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�e ¼
X1
l¼0

XMðlÞ

m¼0

XNðlÞ

n¼0

�elvl
_€T
mn

l ðgÞ: ð1Þ

While the property coefficients of a single crystal, elkl , are constants, the property

coefficients of polycrystalline material, �elvl , are dependent directly on the texture

coefficients, F kv
l

�elvl ¼ 1

2lþ 1

XMðlÞ

k¼1

elkl F kv
l ; 0 6 l 6 r; ð2Þ

where r is the limit of order which depends on the crystal symmetry, sample symme-

try and the property e. It is very important to have a full mathematical representa-

tion of texture evolution during thermomechanical processing. In this paper, texture

evolution is defined as a continuous line in the texture hull to represent the texture

evolution. Texture is conventionally measured using X-ray diffraction as a set of pole

figures. The complete representation of texture requires a number of pole figures

depending on the crystal group and sample symmetry. For cubic-orthotropic case,

three pole figures are usually needed to fully characterize texture. Using ODF plots
has some other limitations. They distort the distribution geometrically in Euler

space. Random distribution looks like textured in the ODF plots. Also there is a

multiplicity in ODF plots, especially for high symmetry materials. Although texture

can be represented in a number of ways, the spectral representation can introduce a

new geometrical representation in the texture hull such that every point represents

one specific microstructure (texture).

Modeling texture evolution is an important component of MSD. To modify the

properties through thermomechanical deformation requires correct representation
of the evolution of microstructures. A conservation principle in the orientation space

proposed by Clement and Coulomb (1979, 1982) was used in this work to model the

texture evolution. This principle refers to an infinitesimal volume element in the ori-

entation (Euler) space during processing. Based on Clement�s formalism and the con-

tinuity equation, Bunge and Esling (1984) studied the flow field of single orientations

of face centered cubic (fcc) metals using a crystal plasticity formulation based on slip

activity on the {1 1 1}Æ1 1 0æ slip system. In a later work (Klein and Bunge, 1991), a

numerical integration methodology was used to obtain a relationship between the
texture coefficients and the deformation step.

In a recent study by Li and Garmestani (2003a,b) an alternate approach using

polycrystalline texture representation rather than single crystal orientation descrip-

tion was used to describe texture evolution. This approach established a linear rela-

tionship between the rate of change of the texture coefficients and the texture

coefficients. Further progress is made in the present study for a direct relationship

between texture coefficients and deformation parameter. A processing path function

is proposed to describe the evolution of texture coefficients in the form of processing
parameters and initial texture coefficients. To examine the accuracy and range of

applicability for this approach, a modified Taylor model proposed by Kalidindi

et al. (1992a, 1992b) was used for comparison. In Taylor model, it is assumed that
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all the individual grains in polycrystalline materials undergo the same deformation

gradient as the macroscopic one. This simplification satisfies the local compatibility,

but often violates equilibrium. Although the Taylor model ignores many complexi-

ties embedding in mechanical deformation, it provides a fairly accurate approximate

solution for the texture evolution of single phase, highly symmetric lattice structures
such as fcc polycrystals during large plastic deformation (Kalidindi et al., 1992a,

1992b; Garmestani et al., 2002).
2. Evolution of texture coefficient during plastic deformation

Using the conservation principle in the orientation space, a set of relationships

for the evolution of texture coefficients can be derived. A formulation is presented
here for the streamlines as an analytical form among the texture coefficients for

any specific thermomechanical process. In the formulation presented here, g is

used as an appropriate metric of the process. For example, in the case of uniaxial

tension, g represents the drawing strain and in the case of compression, g repre-

sents the compression ratio. Texture descriptor used in this study is a set of F mn
l ðgÞ

coefficients that changes as a function of g. If f(g,g) is used to represent texture as

a function of orientation g and processing parameter g, texture at any g can be

expressed as a series of generalized spherical harmonic functions in which F mn
l s

are the weights (coefficients) of these harmonics, as shown in the following

equation:

f ðg; gÞ ¼
X1
l¼0

XMðlÞ

m¼0

XNðlÞ

n¼0

F mn
l ðgÞ _€T

mn

l ðgÞ: ð3Þ

Here _€T
mn

l ðgÞ is the symmetric generalized spherical harmonics for the corresponding

sample and crystal symmetry. For a single crystal orientation distribution in which

all the crystals are oriented along gi, texture coefficients F mn
l are calculated directly

from the spherical harmonics:

F mn
l ¼ ð2lþ 1Þ _€T

mn

l ðgiÞ: ð4Þ
Texture measured from X-ray diffraction or electron backscatter diffraction (EBSD)

gives the volume fraction of material with orientation gi (Garmestani, 1998; Garme-
stani et al., 1999). F mn

l can then be calculated from f(g) by linear combination of the

texture coefficients of single crystal orientations:

F mn
l ¼ ð2lþ 1Þ

X
i

f ðgiÞ _€T
mn

l ðgiÞ: ð5Þ

In Clement�s work (1982), the texture evolution is regarded as a fluid flow in orien-

tation space. Three Eulerian angles compose the orthogonal coordinates of this

space. For any point represented by g, the density is 1
8p2 f ðg; gÞ sin/ and the flow rate

is R(g). According to the conservation principle in the orientation space, the sum of
the increase of the quantity of matter in an element of volume dv and the material
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moving across the surface S should be zero. The continuity equation can then be rep-

resented as:I
S

f ðg; gÞ 1

8p2

� �
sin/R � n̂drþ o

ot

Z Z
V

Z
f ðg; gÞ 1

8p2

� �
sin/dv ¼ 0: ð6Þ

Thus,

of ðg; gÞ
ot

þ 1

sin/
div½f ðg; gÞ sin/RðgÞ� ¼ 0: ð7Þ

For an infinitesimal volume element in the orientation space, dv = du1dudu2, the

first term in Eq. (7) is the increase of the quantity of matter per unit time and the

second term describes the quantity of matter moving out of the infinitesimal volume

element. By simplifying Eq. (7), the continuity equation for the conservation of
quantity of matter in a volume element in the Euler space is:

of ðg; gÞ
ot

þ div½f ðg; gÞRðgÞ� þ ctg/f ðg; gÞRðgÞ ¼ 0: ð8Þ

Using the expression for texture in Eq. (1), Eq. (8) is expanded in a series of spherical

harmonics:

X
lmn

dF mn
l ðgÞ
dg

_€T
mn

l ðgÞ þ
X
krq

F rq
k ðgÞ div _€T

rq

k ðgÞRðgÞ
� �

þ ctg/ _€T
rq

k ðgÞRðgÞ
� �

¼ 0: ð9Þ

The second summation can be further expanded into a series of generalized spherical
harmonics:

div _€T
rq

k ðgÞRðgÞ
� �

þ ctg/ _€T
rq

k ðgÞRðgÞ ¼ �
X
lmn

Amnrq
lk

_€T
mn

l ðgÞ: ð10Þ

Here Arqmn
kl is introduced as the coefficients of the spherical harmonics. Substituting

this back into Eq. (9), a linear relationship between the texture coefficients and their

rate of change is derived:

dF mn
l ðgÞ
dg

¼
X
krq

Amnrq
lk F rq

k ðgÞ: ð11Þ

This linear relationship was used by Bunge and Esling (1984) and Klein and Bunge

(1991) to predict the texture evolution in the orientation space. In this present work,

a texture evolution function obtained by the integration of Eq. (11) was used to de-

scribe the evolution of the texture coefficients with the deformation parameter:

F ðgÞ ¼ eAgF ðg0 ¼ 0Þ: ð12Þ
The coefficients represented by the sixth rank tensor A, can be rearranged as the ele-
ments of a matrix and will be called ‘‘texture evolution matrix’’ in this work. In this

study, Eq. (12) was used to simulate the texture evolution of fcc materials with ran-

dom texture to generate a process path. If the number of useful texture coefficients
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F mn
l is limited to N, then texture data at N + 1 different strains will be needed to ob-

tain a solution for texture evolution coefficients Arqmn
kl . It will be shown that redefin-

ing the sixth rank tensor coefficients to an N · N matrix will substantially simplify

the numerical scheme. The final analytical form for the texture evolution as a func-

tion of A will represent the texture evolution.
The introduction of a microstructure parameter ‘‘A’’ can be used as a methodol-

ogy to predict microstructure evolution in a large set of polycrystalline materials.

The sixth order tensor ‘‘A’’ as derived in Eq. (11) (continuity relation in the Euler

space) is the underlying parameter in this basic and simple law. The sixth order ten-

sor maybe a function of many different other features of the microstructure.

Amnrq
lk ¼ Amnrq

lk ðs1; s2; s3; . . .Þ; ð13Þ
where si may represent a number of microstructure features such as grain size and

distribution, precipitates, dislocation density, second phase particles which can affect
the evolution. A Taylor type crystal plasticity model is used in this paper to calculate

the sixth order ‘‘A’’. The application of Taylor may introduce a limitation in the

range of applications but within the limits of Taylor, many of these microstructural

parameters can be incorporated. As a first exercise, this paper concentrates on Tay-

lor and produces enough results which will show that such continuity relations and

the consequent streamlines (derived in this paper) are valid for a large range of defor-

mation processes. The incorporation of the other alternative (crystal plasticity

homogenization) methodologies can be easily incorporated at a later time.
Texture is defined as ‘‘preferred orientation distribution’’ and is a macroscopic

and average representation of the microstructure. A formulation based on texture

does not take into account grain structure and grain boundary character and also

the grain to grain interaction. Texture as an average representation is only a one-

point distribution function. Higher order statistics can incorporate the additional

details of the microstructure (Garmestani et al., 2000, 2001; Lin et al., 1998, 2000;

Jefferson et al., 2004; Adams et al., 1989; Torquato and Stell, 1985) and can be used

for the evolution of the microstructure. It is clear that the evolution of texture is a
function of the details and physics of the microstructure and the underlying deforma-

tion mechanism. At a first glance it seems that such details are neglected in the for-

mulation presented in the paper. All these details are however embedded in the sixth

order tensor ‘‘A’’. It sounds very optimistic to expect that such a parameter can

incorporate all these effects but the main goal of this paper is to investigate whether

such a claim is valid and to what degree. It will be shown that the evolution can be

taken care of using conservation principle for more than 50% deformation.
3. Simulation result of texture coefficient evolution

The Taylor Model is used in the present study to provide the input data of evo-

lution of F mn
l at corresponding strains. Several other methods were developed to

simulate the texture evolution based on different assumptions. Such methods include

the self-consistent model (Lopes et al., 2003), the finite element analysis method
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(Nakamachi et al., 2000; Raabe and Roters, 2003; Kalidindi, 2001; Demirel et al.,

2003; Houtte et al., 2002) and the Constrained Hybrid model (Parks and Ahzi,

1990; Ahzi et al., 1994). This work is neither to verify the correctness of the Taylor

model, nor to develop a new model in terms of deformation mechanisms. Factors

that will be considered in physical models, such as the constitutive relations in the
slip systems, strain hardening and strain rate, are not considered at this stage. Pre-

diction from Taylor model simulation and not experimental data are used since

the Taylor model gives accurate estimates at different strains. The goal of our study

is to propose an analytical form for the texture evolution and check its validity, lim-

itations and applicability.

Using Eq. (11), the solution for Arqmn
kl was obtained from known texture coeffi-

cients at different deformed states. To check the validity of this approach, texture

coefficients F mn
l at other strains calculated from the resultant Arqmn

kl according to
Eq. (12) are compared with those predictions from the Taylor model. For conve-

nience, the initial texture in this study is arbitrarily assumed to be an aggregate of

400 crystals evenly distributed in the orientation space. The corresponding (1 0 0),

(1 1 0) and (1 1 1) pole figures of this data set are illustrated in Fig. 1. The maximum

intensity is very small, less than 1.5 times random. F 11
0 ; F 11

4 ; F 12
4 and F 13

4 for this tex-

ture condition are 1.00, 0.04, �0.05, and 0.002, respectively. All the other texture

coefficients are zeros. The values are very close to the ideal random texture where

only F 11
0 is 1 and all the other texture coefficients are zero.

For the present study, face centered cubic crystal system and orthotropic sample

symmetry are assumed. In this system, the higher order texture coefficients F mn
l with

l > 4 (Eq. (2))will not influence elastic properties (Bunge, 1982).As a result, aminimum

value of 4 is chosen for the order of rank l in Eq. (3). This greatly reduces the complexity

of our problem.Furthermore, F 11
0 is a constant (always 1.0). This reduces the number of

texture coefficients to only three terms: F 11
4 ; F 12

4 and F 13
4 . That is to say, N = 3.

From Eq. (11), we have:

dF 11
4 ðgÞ
dg

¼
XLmax

k¼0

XNðkÞ

r¼0

XMðkÞ

q¼0

Amnrq
lk F rq

k ðgÞ

¼ A1111
40 F 11

0 þ A1111
44 F 11

4 þ A1112
44 F 12

4 þ A1113
44 F 13

4 þ A1111
46 F 11

6 þ A1112
46 F 12

6 þ � � � ;
ð14:1Þ
Fig. 1. (1 0 0), (1 1 0) and (1 1 1) pole figures of initial simulated random texture by 400 crystals.
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dF 12
4 ðgÞ
dg

¼ A1111
40 F 11

0 þ A1211
44 F 11

4 þ A1212
44 F 12

4 þ A1213
44 F 13

4 þ � � � ; ð14:2Þ

dF 13
4 ðgÞ
dg

¼ A1311
40 F 11

0 þ A1311
44 F 11

4 þ A1312
44 F 12

4 þ A1313
44 F 13

4 þ � � � ; ð14:3Þ

or in matrix form,

dF 11
0 =dg

dF 11
4 =dg

dF 12
4 =dg

dF 13
4 =dg

2
6664

3
7775 ¼

A1111
00 A1111

04 A1112
04 A1113

04 � � �
A1111
40 A1111

44 A1112
44 A1113

44 � � �
A1211
40 A1211

44 A1212
44 A1213

44 � � �
A1311
40 A1311

44 A1312
44 A1313

44 . . .

2
6664

3
7775

F 11
0

F 11
4

F 12
4

F 13
4

..

.

2
66666664

3
77777775
: ð14:4Þ

Here Amnrq
lk are components of a sixth order tensor reduced to a second rank tensor.

Note that since F 11
0 is always equal to 1, the rate of change of this coefficient is always

0. It is clear that the summation over the right hand side does not need to be limited

to Lmax = 4 and actually depends on the character of the texture. Most of the com-
ponents of this tensor are negligible because most of F mn

l s are either 0 or not of our

interest. When Lmax = 4, only 16 of the nonzero Amnrq
lk coefficients are shown in the

matrix above. These coefficients will be used to describe the rate of change of texture

coefficients as a first estimate. The contribution from the higher order terms up to

Lmax = 8 will also be examined in the latter part of this work. The truncation error

introduced by terminating at a finite value k = Lmax will be studied in a subsequent

work. For simplification, only Lmax = 4 is considered here for mathematical expan-

sion, Eq. (14) is then rewritten in the following contracted form:

dF 1=dg

dF 2=dg

dF 3=dg

dF 4=dg

2
6664

3
7775 ¼

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

A40 A41 A42 A43

2
6664

3
7775

F 1

F 2

F 3

F 4

2
6664

3
7775: ð15Þ

As described above, the sixth order tensor of texture evolution coefficients is reduced

to a second order matrix by filtering texture coefficients to only the ones which are of

interest. After the calculation of the texture evolution matrix A, texture coefficients
along the deformation history can be calculated by the texture evolution function:

F ðgÞ ¼ eAðg�g0ÞF ðg0Þ: ð16Þ

In the present analysis, the texture coefficients at several different strains under uni-

axial tension were obtained by the Taylor model. From these input data, texture evo-

lution coefficients Arqmn
kl are calculated by solving Eq. (15). Next these coefficients will

be used to simulate the evolution of texture coefficients at other strains in the defor-

mation history according to Eq. (16). These simulated texture coefficients were com-

pared with the Taylor prediction. Two methodologies are used to calculate the A

coefficients from the Taylor model. In the first attempt the data from the simulations
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are calculated for five different strains and the four simultaneous sets of equations

are solved for the A coefficients. In the second method, texture data at a large num-

ber of strains are used and a least squares error method is used to calculate the A

coefficients.

3.1. Determined system�s approach

A number of points in the texture evolution paths are chosen and the data for the

texture coefficients are calculated using the Taylor model. In the first set, a strain step

dg of 5% was used. The F mn
l , input data, at strains of 15%, 20%, 25%, 30% and 35%

were calculated from Taylor model. Here these strains combined are called the initial

strain set. From the rate of change of texture coefficient dF mn
l =dg and the texture

coefficients F mn
l at different strains, Arqmn

kl were calculated. Using the texture evolution
matrix A, the simulated values of texture coefficients F mn

l at strains from 0% to 50%,

were obtained. The evolution of these three texture coefficients with the strain is

shown in Fig. 2. In the strains between 5% and 45%, the recalculated F 11
4 from

Arqmn
kl are very close to those obtained from Taylor model according to Fig. 2(a).

When the strain is higher than 45%, the recalculated F 11
4 begins to deviate from

the Taylor prediction. The same trend is observed in the evolution curves of

F 12
4 and F 13

4 from Fig. 2(b) and (c). In the range of initial strain set, from 5% to

40%, the results from the linear model have a first order agreement with the Taylor
prediction. In a typical case when the strain is 30%, the difference between recalcu-

lated values and Taylor prediction is negligible. It deviates from the prediction of

Taylor model when the strain is far from the initial strain set.

In the second set, a strain step of 2% was used. The initial strain set includes 22%,

24%, 26%, 28% and 30%. Fig. 2 shows that the texture evolution function using A

from this strain set works well in the strains from 20% to 40%. If the strain is smaller

than 20%, F 11
4 and F 12

4 are under-predicted and F 13
4 is over-predicted.

A similar procedure was applied with a strain step of 1%. The initial strain set in-
cludes 23%, 24%, 25%, 26% and 27%. Texture evolution matrix A obtained from this

procedure works well in the strain range close to the initial strain set. When the strain

is larger than 30%, the simulated texture coefficients evolution curve deviates from

the raw data curve. At larger strains, the predictions for F 11
4 ; F 12

4 and F 13
4 are com-

pletely out of the acceptable range.

It is clear from the results above that the procedure introduced in this paper pro-

vides the best results when used for interpolation. This means that if the texture coef-

ficients are predicted at a strain which is within the range of initial strain set, the
error is negligible. If this prediction is extended to strains out of the range of the ini-

tial strain set, the farther the strain is from the range of the initial strain set, the

worse the prediction of the texture evolution. The choice of the initial strain set is

critical in improving the accuracy of the modeling for the texture evolution.

In practice, the main application for this methodology is to calculate the A coef-

ficients from the experimental data. One major problem for this application is that

the experimental data for texture at different strains are usually not widely available.

Furthermore, it may be necessary to predict the texture data outside of the range of
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Fig. 2. Simulated processing path function during uniaxial tension of (a) F 11
4 , (b) F 12

4 and (c) F 13
4 using

texture evolution matrix A obtained by strain step of 1%, 2% and 5%, respectively. Evolution curves of

F 11
4 ; F 12

4 and F 13
4 of Taylor prediction and simulation curve by least squares error method are also

illustrated.
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the available experimental data. Fully utilizing the strain range of the experimental

data will increase the accuracy of this model to predict the texture evolution behavior

outside of the experimental data.

3.2. Least square errors method

To improve the model�s texture evolution predictions, the full range of the

experimental data in the initial strain set is utilized. This was achieved by using

the least squares error method to obtain the texture evolution coefficients. If

M + 1 is the dimension of the initial strain set, there are M simultaneous sets

of equations. N is the number of the rate of change of F mn
l s of interest. P is then

the number of F rq
k coefficients which are required to calculate each of the change

rate of F mn
l . From M + 1 texture data (M > N) at different strains, the texture evo-

lution coefficient matrix A was calculated from the over-determined system of

equations as shown below:

dF mn
l ðgÞ
dg

� �
¼ ½A�½F rq

k ðgÞ�: ð17Þ

dF mn
l ðgÞ=dg is an N · M matrix. A is an N · P matrix and F rq

k ðgÞ is an P · M matrix.

Here the number of points M is chosen as 10; the initial strain set varies from

30% to 41%, and the strain step dg is 1%. The range of this initial strain set is

smaller than that used with strain step of 5%, but larger than those used with

the strain step of 2% and 1%. From the texture data at these strains, Arqmn
kl coeffi-

cients were calculated by the least squares error method. The resultant Arqmn
kl s were

used to recalculate the evolution of texture coefficients during the deformation

from 20% to 50%. To illustrate the advantage of the least squares error method,

the results are also shown in Fig. 2. It can be seen that the least squares error

method describes the behavior better than using a strain step of 5%. The first result

has a small initial strain set range (from 30% to 40%) while the second result has a

relatively large initial strain set range (from 25% to 45%). The agreement with the

Taylor prediction of the simulated results using least squares method is almost the

same as using the strain step of 5% in the strain range of 25% to 45%. This range is
included in the initial strain set. When extrapolated outside of the initial strain

range, the recalculated texture coefficients evolution curves using the least squares

error method are closer to the curves from the Taylor prediction than any other

simulated curves. The texture evolution coefficients obtained using least squares

method give a more accurate description of the texture evolution behavior during

mechanical deformation.

An error parameter, errormnl , defined as the absolute value of the difference be-

tween the simulated texture coefficients and the Taylor prediction is introduced to
demonstrate the accuracy of the procedure.

errormnl ðgÞ ¼ absððF mn
l Þsimulated � ðF mn

l ÞrawdataÞ: ð18Þ
To compare the errors in a strain range, a mean error errormn

l parameter is defined as

the average of the errors as calculated in Eq. (18) along the strain range:
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errormn
l ¼ 1

N

X
errormn

l : ð19Þ

Fig. 3 illustrates the mean error parameter for the three nonzero texture coefficients
obtained from different approaches. In the strain range from 20% to 50%, the sim-

ulation from over-determined system using least squares error method fits best to

the Taylor prediction. The mean errors of F 11
4 ; F 12

4 and F 13
4 from the over-deter-

mined system (least square errors method) are all smaller than the mean errors of

the corresponding texture coefficients using the determined system method. The sim-

ulation from strain step of 5% is the next most accurate followed by the 2% strain

step. For a strain step of 1%, the mean error becomes very large. This large error

occurs because the error is averaged in a strain range which is 10 times the range
of its initial strain set. The analysis of the mean error corresponds to the analysis

of simulation behavior of the previous texture evolution function.

3.3. Influence of truncation limit for texture coefficients

In all above simulations the maximum number of coefficients used in Eq. (3) was

Lmax = 4. Since texture representation requires a larger number of coefficients, there

maybe a truncation error which may be reduced by increasing the number of coef-
ficients. To check the influence of truncation error, the number the results for

Lmax = 4 was compared to Lmax = 8 by increasing the number of coefficients to 8.

The initial strain set included 1%, 2%, 3%, . . ., 50%. The simulated results for the evo-

lution of texture coefficient F 11
4 is presented in Fig. 4. The simulated evolution curve

for F 11
4 from Lmax = 4 (using the same initial strain set) is also shown here for
Mean error in simulating texture coefficients 

0

0.05

0.1

0.15

0.2

0.25

F411 F412 F413
Flmn

error

least squares error

strain step=5%

strain step=2%

Fig. 3. errormnl , mean error of texture evolution of F 11
4 ; F 12

4 and F 13
4 during uniaxial tension when the

simulated simulation results are obtained using different methods.
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comparison. Using a higher truncation limit (Lmax = 8), the predictions for the tex-

ture coefficients are closer to Taylor�s results.
The texture coefficients for the initial microstructure has been selected near the

origin of the texture hull, which represents a random state. The spherical harmonics

method is efficient in representing the random or weak textured microstructures.
This efficiency may have contributed to the small differences using the different trun-

cation limits in Fig. 4. The results may be different if the initial microstructure is se-

lected as a highly textured material. A full study of these other factor will be

presented in a later work.

3.4. Application of the texture evolution model for other processing paths

This model has shown a remarkable success in representing texture evolution in
uniaxial tension. It can also be applied to other processing paths including uniaxial

compression test. From the same random texture, the evolution of the texture coef-

ficients is illustrated in Fig. 5 for compression.

The Taylor prediction of F 11
4 ; F 12

4 and F 13
4 are shown in Fig. 5(a), (b) and (c),

respectively. In a similar process, a strain step dg of 5% whose initial strain set in-

cludes 5%, 10%, 15%, 20% and 25% is used. Also, a least squares error method

was used with the initial strain set of 1%, 2%, 3%, . . ., 30%. Fig. 5 shows that the

resultant curves from these two simulation methods agree well with the curves from
the predictions from the Taylor model. Least squares error method results in a

small improvement in the prediction. In Fig. 6, mean error is used to compare the
Evolution of F411 during uniaxial tension
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-0.34

-0.33

-0.32

-0.31

35% 36% 37% 38% 39% 40%

strain
F411

raw data 

Lmax=4

Lmax=8

Fig. 4. Simulated processing path function of F 11
4 during uniaxial tension using texture evolution matrix A

obtained using Lmax as 4 and 8, respectively.



Evolution of F411 during uniaxial compression 

0

0.05

0.1

0.15

0.2

0.25

0% 5% 10% 15% 20% 25% 30%

F411

F411 raw data

strain step= 5%

least squares error method
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Evolution of F413 during uniaxial compression 
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Fig. 5. Simulated processing path function during uniaxial compression of (a) F 11
4 , (b) F 12

4 and (c) F 13
4

using texture evolution matrix A obtained by strain step of 5%, respectively. Evolution curves of

F 11
4 ; F 12

4 and F 13
4 of Taylor prediction and simulation curve by least squares error method are also

illustrated.
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0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

F411 F412 F413

texture coefficient

mean error

strain step= 5%

least squares error
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simulated simulation results are obtained using different methods.
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deviation from the Taylor prediction. In the strain range from 0% to 30%, the mean

error using least squares error method is only one-fifth to one-tenth of that using

strain step dg of 5%.

Another state of stress used for the deformation process is rolling. From the same

initial random texture, the evolution of the texture coefficients during rolling for a

strain range between 0% and 30% is shown in Fig. 7. The resultant simulated curves

for the evolution of the texture coefficients are also illustrated in Fig. 7. The results

show that the texture evolution model also fits the Taylor prediction in rolling and
the simulation results from the least squares error method are in better agreement

than that using strain step dg of 5%. The mean errors of these two simulation meth-

ods for the strain range from 0% to 30% shown in Fig. 8 gives the same trend.

Predictive range of the texture evolution model is not very impressive when it is

applied to the Taylor simulation. It works well in the range close to the initial strain

set. If the texture evolution matrix is applied to highly deformed microstructures or

those quite different from the initial texture, the error is increased. This deviation

may be attributed to the limitation of the Taylor model which is based on the
assumption of homogeneous deformation rate throughout the material. This limita-

tion leads to the limited predictive range of the conservation principle.

The limitation in using the simulation from Taylor is also revealed in the restric-

tion of the predictive range of the texture evolution matrix A for other points in the

texture hull. The ideal texture evolution matrix A should work for any microstruc-

ture with different textures as long as the same processing path is used. It is clear

from this investigation that predictive range of A is large but limited. For example,

A for uniaxial tension obtained from the initial strain set of 30%, 31%, . . ., 40% using
the least squares error method is applied to a randomly textured sample which was



Evolution of F411 during rolling
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Fig. 7. Simulated processing path function during rolling of (a) F 11
4 , (b) F 12

4 and (c) F 13
4 using texture

evolution matrix A obtained by strain step of 5%, respectively. Evolution curves of F 11
4 ; F 12

4 and F 13
4 of

Taylor prediction and simulation curve by least squares error method are also illustrated.
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rolled to 5%. As shown in Fig. 9, the deviation of the present model for the texture

evolution is very large when compared to Taylor�s model. More work is needed to
improve the predictive capability of the texture evolution matrix. Increasing the

truncation limit for the texture coefficients may improve the error as mentioned in

the earlier section.
Texture evolution during uniaxial tension for a sample rolled 5% 
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Fig. 9. Solid curves illustrate Taylor prediction of F 11
4 ; F 12

4 and F 13
4 during uniaxial tension of sample

rolled 5% first from random texture status obtained from Taylor model. Dashed curves illustrate

simulation result of F 11
4 ; F 12

4 and F 13
4 from A calculated from the initial strain set of 30%, 31%, . . ., 40%

(uniaxial tension strain start from a random status) using the least squares error method.
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4. Texture evolution path in texture hull

As described before, for the cubic-orthotropic system, three nonzero texture coef-

ficients, F 11
4 ; F 12

4 and F 13
4 are sufficient to describe the texture in studying elastic

properties. In a 3D space whose Cartesian coordinate axes are composed of these
three texture coefficients, any point represents a microstructure (with a unique tex-

ture) that is related to its corresponding properties. The microstructure at any defor-

mation state can then be represented by a point with coordinates represented by the

texture coefficients. Texture evolution path is then a curve connecting the points

during a single deformation process. Fig. 10 shows the texture evolution paths of
Fig. 10. Processing path from the Taylor prediction and simulated result presented in the texture hull

whose coordinates are three texture coefficients F 11
4 ; F 12

4 and F 13
4 . Solid line is Taylor prediction. Dash line

denoted by symbol $, very close to the black line, is from simulated result using least squares error

method. Dash line for the simulation from strain step of 5% and 2% are denoted by symbol � and ¯
respectively.
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cubic-orthotropic system from Taylor�s simulation and the texture evolution path

model. The results describe the texture evolution from a strain of 20% to a strain

of 50% during uniaxial tension. Using the model proposed in this paper, the evolu-

tion of texture coefficients as a function of the deformation is obtained. This model

describes a simple but effective methodology to connect the evolution of microstruc-
ture and processing. The solid texture evolution path from the Taylor prediction is

indistinguishable from the red dashed texture evolution path lines simulated using

least squares error method. The dashed texture evolution path line denoted by sym-

bol � represents the simulation result by a strain step of 5%. It deviates a little from

the texture evolution path as constructed from the Taylor prediction. The texture

evolution path lines simulated by a strain step of 2% shows a larger deviation.

The application of texture evolution path in MSD becomes very convenient and

more understandable when it is constructed in the texture hull. Illustrated in Fig. 11,
the texture hull is a compact convex subspace. All textures (representing microstruc-

tures) can only exist inside this convex subspace such that no point can exist outside

of the wire-framed texture hull. The texture evolution path in Fig. 11 shows the sim-

ulated texture evolution from a textured state ðF 11
4 ¼ 1; F 12

4 ¼ 0; F 13
4 ¼ 0Þ to a strain
Fig. 11. Processing path of uniaxial tension from an initial state fF 11
4 ; F 12

4 ; F 13
4 g ¼ f1; 0; 0g to a strain of

50% from the simulated result using least squares error method in the wire-framed texture hull. The staring

point at a strain of 0% is close to original point. Yellow circle labels the microstructure at a strain of 50%.
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of 50% during uniaxial tension. The texture evolution matrix was obtained from the

least squares error method for this simulation. The starting point is very close to ori-

gin of the coordinate system because the first three texture coefficients of the original

random state are all zero. Using MSD, properties closure (Adams et al., 2001, 2004;

Kalidindi et al., 2004) can be obtained by the intersection of several hyperplanes and
may result in a subspace in the texture hull. Similarly, properties along the texture

evolution path can be obtained by simple arithmetic averages of these microstructure

components using Taylor�s model as upper bound and Sach�s model as lower bound.

Taylor�s model assumes a uniform deformation gradient for all grains in the poly-

crystalline materials and identical to the macroscopic deformation gradient. Sachs

model assumes uniform stress throughout all the grains. Constrained-hybrid model

adds the assumption of zero extension along some specific crystal directions (Parks

and Ahzi, 1990). These models all require a clear understanding of the underlying
deformation mechanism. They are applied in different materials and different defor-

mation stages. The model proposed here in this study can simulate the texture evo-

lution from the experimental measurement of textures without fully understanding

the underlying deformation mechanisms. The model can clearly work best for inter-

polation as long as the texture evolution matrix (A) can be determined from the

experimental data. Extrapolation seems to give large deviation from the expected re-

sults when textures are predicted farther away from the initial strain set. Improving

the deformation mechanisms may add some constraints and improve the predictive
capability.

In this work only uniaxial tension, compression and rolling were studied. The

same methodology can be implemented in obtaining texture evolution functions

for other processing methods, such as biaxial tension, processing in magnetic field

and so on. With the broadened knowledge, the processing path from one initial

microstructure to a desired microstructure can be achieved by a combination of these

texture evolution path functions.
5. Streamlines for the evolution of texture coefficients

The texture evolution function, as described earlier, is a function of the pro-

cessing parameter h. This may impose a restriction on the use of the present mod-

el to a variety of optimization processes. In the spirit of Microstructure Sensitive

Design, it is desirable to get the family of all texture evolution path functions for

a specific processing path. This means that independent of the initial texture
(microstructure), a materials designer may wish to explore all the different texture

evolution paths to examine the family of microstructures that may be achieved by

a single process (rolling, etc.). In this section, the streamline functions will be

derived from the texture evolution functions. If the evolution of texture coeffi-

cients for polycrystalline materials in the texture hull is considered as a fluid

flow, streamlines can then describe the texture evolution independent of the path

parameter, h. In the following, the streamline for the evolution of the texture
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coefficients will be derived. Suppose the eigenvalues of A are a1, a2, . . .,an and the

corresponding eigenvectors are: ~a1; ~a2; . . . ;~an.

LetL ¼

a1
a2

. .
.

an

2
66664

3
77775 ð20Þ

and

P ¼ ~a1 ~a2 � � � ~an½ �: ð21Þ

Now it is clear that the evolution matrix A, (or the sixth rank tensor) can be decom-

posed as:

A ¼ PLP�1: ð22Þ

Substituting this equation back into the texture evolution path function (12), we

obtain:

F ðgÞ ¼ ePLP
�1gF ðg0 ¼ 0Þ: ð23Þ

Further use of Eqs. (20) and (21), we have:

F ðgÞ ¼ PeLgP�1F ðg0 ¼ 0Þ ¼ P

ea1g

ea2g

. .
.

eang

2
66664

3
77775P

�1F ðg0 ¼ 0Þ: ð24Þ

The same operation is executed on both sides of Eq. (24) to get:

P�1F ðgÞ � em ¼

ea1g

ea2g

. .
.

eang

2
66664

3
77775P

�1F ðg0 ¼ 0Þ � em: ð25Þ

em is a unit vector whose elements are 0 except the mth element.

That is:

P�1F ðgÞ � em

P�1F ðg0 ¼ 0Þ � em
¼ eamg: ð26Þ

From here the texture evolution path parameter is obtained:
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g ¼
ln P�1F ðgÞ�em

P�1F ðg0¼0Þ�em

� �
am

: ð27Þ

Substituting the evolution path parameter back to the texture evolution path func-

tion, we get the expression of the streamline of the texture coefficients:
F ðgÞ ¼ exp
ln P�1F ðgÞ�em

P�1F ðg0Þ�em

� �
am

A

0
@

1
AF ðg0 ¼ 0Þ: ð28Þ

Fig. 12 shows the streamlines for texture evolution in fF lm
l g space during uni-

axial tension. The only variable is the initial texture. The five streamlines
shown here are from five different microstructures, whose fF 11

4 ; F 12
4 ; F 13

4 g are

{0.2,0,0}, {0.4,0,0}, {0.6,0,0}, {0.8,0,0} and {1.0,0,0}, respectively. The same

texture evolution matrix A calculated by the least squares error method in

Section 3.2 is used for the calculation of these five streamlines. The texture

evolution can now be compared to the steady-state condition. There is no

change in the direction of the velocity vector at any point. This means that

the streamline is unique if the initial texture and processing method are the

same.
The continuity relations in the Euler space can reduce a large set of constitutive

relations and all its details into a sixth order tensor ‘‘A’’ for relatively large strains.

Such a reduction and its consequent set of streamlines can make the optimization for

the texture evolution path real simple and save the designer a large amount of time.

The following example is provided to explain the main utility of the texture evolution

path parameter.

Texture can be represented by a set of texture coefficients as in Eq. (3). The

first two nonzero texture coefficients are used in a two dimensional plot as in
Fig. 13(a).

An off-the-shelf material (manufactured by casting and rolling) maybe repre-

sented by point A in this two-dimensional plot. The material represented by point

A, however, may not be the desired material and we may want to process a de-

sired microstructure represented by point ‘‘B’’. The question that may be raised

is how the material represented by A can be processed to become a material rep-

resented by B. Based on the present plasticity formulations we may have to de-

pend on a large data base and the correct answer may lie in a large number of
crystal plasticity set of simulations. The present paper provides a time saving

and robust methodology to get to the material B with texture represented by

Eq. (3) by selecting one or a multiple number of paths. If the family of all pos-

sible deformations paths are considered for both A and B (as in Fig. 13(a)) the

solution may be a combination of texture evolution paths connecting the two

points (Fig. 13(b)). The solution is obviously not unique but using the streamlines

formulation developed in the present paper we can choose a path which can best

fit the designers objective.



Fig. 12. Streamline of uniaxial tension calculated from the texture evolution matrix obtained from

Taylor�s model.
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Texture is considered a macroscopic manifestation of the microstructure crys-

tal grain orientation through the continuity relations in the Euler space. The

results show that the continuity relations work in a large strain range which

is a very important factor proving the accuracy of this principle. Remember

that we use the continuity relations in the materials coordinate as part

of the field equations in many of the formulations without regards to the



Fig. 13. (a) Materials design problem presented in a simplified two dimensional materials space.

(b) Streamline grid in the materials spaces present the solution for materials design.

1614 D.S. Li et al. / International Journal of Plasticity 21 (2005) 1591–1617
underlying mechanisms for the deformation processes. It is clear that the con-

tinuity relations in the materials coordinate may also reach its limits and can

only apply when the material can be assumed a continuous medium throughout
the deformation process. The continuity relations in the orientation space can

also reach its limits of usefulness when there is a discontinuity in the orienta-
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tion space. This will occur during recrystallization and may occur in a number

of other situations.
6. Conclusion and perspectives

A conservation principle for texture evolution has been utilized to get a texture

evolution path function. The solution also provides streamlines during any mechan-

ical deformation process (rolling forging, drawing, etc.). Using texture coefficients as

a descriptor, microstructures can be represented as points in the multidimensional

space whose axes are these texture coefficients. Texture evolution path, a trace of tex-

ture coefficients during deformation history, is used to represent the microstructure

evolution in this multidimensional space.
The texture evolution matrix A is a critical parameter in the processing path func-

tion developed here. It is calculated from texture coefficients at different levels of

deformation defined as the initial strain set. The simulation works well as a predic-

tive tool if the desired microstructure (texture) is calculated for deformations in the

range of the initial strain set. Increasing the range of the initial strain set will improve

the performance of simulated result in a larger strain range. If more data are avail-

able to calculate the texture evolution matrix, utilization of the least squares error

method will increase the accuracy of simulated texture evolution path.
Presenting the results of the texture evolution path in the texture hull shows how

the microstructure evolves with the deformation parameter. Streamlines obtained

from the texture evolution path functions give a representation of the texture evolu-

tion independent of the deformation parameter. Streamlines can simplify the optimi-

zation of the processing path and provide the mechanical designers with an

important tool in Microstructure Sensitive Design.
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